Skip to main content

Advertisement

Log in

Exploring drought tolerance in melon germplasm through physiochemical and photosynthetic traits

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Drought stress is a global concern that has a negative impact on the growth and production of melon (Cucumis melo L.). In this study, 58 melon accessions were subjected to drought stress induced by polyethylene glycol (PEG-6000). Comprehensive evaluations were performed to identify various morphological, biochemical, and physiological attributes of melon. Drought stress significantly reduced shoot length (SL), stem diameter (SD), leaf width (LW), and leaf length (LL) in the melon seedlings. Similarly, drought stress resulted in a significant reduction in photosynthetic pigments (Chl, Car), relative water content (RWC), chlorophyll fluorescence (Fv/Fm), transpiration rate (Tr), stomatal conductance (Gs), net photosynthetic rate (Pn) and intercellular CO2 concentration (Ci). On the other hand, biochemical indicators such as malondialdehyde content (MDA), soluble protein content (SP) and soluble sugar content (SS) were observed to be enhanced upon exposure to drought stress. Most indicators showed strong positive correlations based on Pearson correlation analysis. Furthermore, the modified membership function and D values for the drought tolerance indices were calculated to evaluate the drought tolerance level of melon accessions. In addition, melon accessions were classified into drought-resistant and drought-sensitive groups based on cluster analysis. As a result, mel-46, mel-58 and mel-15 were identified as drought-resistant genotypes among the assessed melon accessions. Taken together, these accessions provide potential genetic resources for further improvement and breeding of melon genotypes. Furthermore, the indicators responsible for the assessment of drought tolerance can provide a baseline for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study will be made available on request.

Abbreviations

PEG:

Polyethylene glycol 6000

DC:

Drought-tolerant coefficient

SL:

Shoot length,

SD:

Stem diameter

LL:

Leaf length

LW:

Leaf width

RWC:

Relative water content

Chl:

Chlorophyll content

Car:

Carotenoids

Fv/Fm:

Maximum quantum efficiency of photosystem II photochemistry

MDA:

Malondialdehyde content

SS:

Soluble sugar conten

SP:

Soluble protein content

Tr:

Transpiration rate

Gs:

Stomatal conductance

Pn:

Net photosynthetic rate

Ci:

Intercellular CO2 concentration

References

  • Adibah MR, Ainuddin A (2011) Epiphytic plants responses to light and water stress. Asian J Plant Sci 10(2):97–107

    Article  Google Scholar 

  • Ahmad S, Muhammad I, Wang GY, Zeeshan M, Yang L, Ali I, Zhou XB (2021) Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biol 21(1):1–14

    Article  Google Scholar 

  • Alghabari F, Ihsan MZ, Hussain S, Aishia G, Daur I (2015) Effect of Rht alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis. Environ Sci Pollut Res 22(20):15506–15515

    Article  CAS  Google Scholar 

  • Amir SB, Rasheed R, Ashraf MA, Hussain I, Iqbal M (2021) Hydrogen sulfide mediates defense response in safflower by regulating secondary metabolism, oxidative defense, and elemental uptake under drought. Physiol Plant 172(2):795–808

    Article  CAS  PubMed  Google Scholar 

  • Amiri Forotaghe Z, Souri MK, Ghanbari Jahromi M, Mohammadi Torkashvand A (2022) Influence of humic acid application on onion growth characteristics under water deficit conditions. J Plant Nutr 45(7):1030–1040

    Article  CAS  Google Scholar 

  • Ansari W, Atri N, Singh B, Kumar P, Pandey S (2018) Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica 56(4):1019–1030

    Article  CAS  Google Scholar 

  • Ariafar S, Forouzandeh M (2017) Evaluation of humic acid application on biochemical composition and yield of black cumin under limited irrigation condition. Bull Soc R Sci Liege 86:13–24

    Article  CAS  Google Scholar 

  • Awaad HA (2022) Approaches in sunflower to mitigate impact of climate change. In: Awaad HA (ed) Sustainable Agriculture in Egypt. Springer, Cham, pp 243–274

    Chapter  Google Scholar 

  • Behl T, Bungau S, Kumar K, Zengin G, Khan F, Kumar A, Kaur R, Venkatachalam T, Tit DM, Vesa CM, Barsan G, Mosteanu DE (2020) Pleotropic effects of polyphenols in cardiovascular system. Biomed Pharmacother 130:110714

    Article  CAS  PubMed  Google Scholar 

  • Behl T, Mehta K, Sehgal A, Singh S, Sharma N, Ahmadi A, Arora S, Bungau S (2022) Exploring the role of polyphenols in rheumatoid arthritis. Crit Rev Food Sci Nutr 62(19):5372–5393

    Article  CAS  PubMed  Google Scholar 

  • Bloomer C, Rehm G (2014) Using principal component analysis to find correlations and patterns at diamond light source. Proceedings of IPAC

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Bungau S, Behl T, Aleya L, Bourgeade P, Aloui-Sossé B, Purza AL, Abid A, Samuel AD (2021) Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. Environ Sci Pollut Res 28(24):30528–30550

    Article  CAS  Google Scholar 

  • Chen X, Min D, Yasir TA, Hu Y-G (2012) Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Res 137:195–201. https://doi.org/10.1016/j.fcr.2012.09.008

    Article  Google Scholar 

  • Chevilly S, Dolz-Edo L, Martínez-Sánchez G, Morcillo L, Vilagrosa A, López-Nicolás JM, Blanca J, Yenush L, Mulet JM (2021) Distinctive traits for drought and salt stress tolerance in melon (Cucumis melo L.). Front Plant Sci. https://doi.org/10.3389/fpls.2021.777060

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury J, Karim M, Khaliq Q, Ahmed A, Mondol AM (2017) Effect of drought stress on water relation traits of four soybean genotypes. SAARC J Agric 15(2):163–175

    Article  Google Scholar 

  • Dey R, Lewis SC, Arblaster JM, Abram NJ (2019) A review of past and projected changes in Australia’s rainfall. Wiley Interdiscip Rev Clim Change 10(3):e577

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Falchi R, Petrussa E, Braidot E, Sivilotti P, Boscutti F, Vuerich M, Calligaro C, Filippi A, Herrera JC, Sabbatini P (2020) Analysis of non-structural carbohydrates and xylem anatomy of leaf petioles offers new insights in the drought response of two grapevine cultivars. Int J Mol Sci 21(4):1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey T (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6(03):269–279

    Article  CAS  PubMed  Google Scholar 

  • Galeano E, Vasconcelos TS, Novais de Oliveira P, Carrer H (2019) Physiological and molecular responses to drought stress in teak (Tectona grandis Lf). PLoS ONE 14(9):e0221571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giménez C, Gallardo M, Thompson RB (2013) Plant–water relations, in reference module in earth systems and environmental sciences. Elsevier, pp. 1–8. https://doi.org/10.1016/B978-0-12-409548-9.05257-X

  • Gitea MA, Gitea D, Tit DM, Purza L, Samuel AD, Bungău S, Badea GE, Aleya L (2019) Orchard management under the effects of climate change: implications for apple, plum, and almond growing. Environ Sci Pollut Res Int 26(10):9908–9915. https://doi.org/10.1007/s11356-019-04214-1

    Article  CAS  PubMed  Google Scholar 

  • Gómez-García R, Campos DA, Aguilar CN, Madureira AR, Pintado M (2020) Valorization of melon fruit (Cucumis melo L.) by-products: phytochemical and biofunctional properties with emphasis on recent trends and advances. Trends Food Sci Technol 99:507–519

    Article  Google Scholar 

  • Gulzar S, Manzoor MA, Liaquat F, Shah IH, Rehman A, Hameed MK, Arif S, Zhou X, Zhang Y (2023) Effects of melatonin and Trichoderma harzianum on pak choi yield, chlorophyll contents and antioxidant defense system under clubroot disease. S Afr J Bot 158:292–300. https://doi.org/10.1016/j.sajb.2023.05.021

    Article  CAS  Google Scholar 

  • Guo Y, Yu H, Yang M, Kong D, Zhang Y (2018) Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. Seedling. Russ J Plant Physiol 65(2):244–250

    Article  CAS  Google Scholar 

  • Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Science 368(6488):266–269

    Article  CAS  PubMed  Google Scholar 

  • Hernandez JO, An JY, Combalicer MS, Chun J-P, Oh S-K, Park BB (2021) Morpho-anatomical traits and soluble sugar concentration largely explain the responses of three deciduous tree species to progressive water stress. Front Plant Sci. https://doi.org/10.3389/fpls.2021.738301

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Zou Z, He C, He Z, Zhang Z, Li J (2011) Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant Soil 339(1):391–399

    Article  CAS  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Wu H, Wang W, Zhang Z (2014) Optimization of antibacterial peptides preparation using pepsin from prickly ash seed protein by response surface methodology. Sci Technol Food Ind 35(20):226–231

    CAS  Google Scholar 

  • Khan MN, Khan Z, Luo T, Liu J, Rizwan M, Zhang J, Xu Z, Wu H, Hu L (2020) Seed priming with gibberellic acid and melatonin in rapeseed: consequences for improving yield and seed quality under drought and non-stress conditions. Ind Crops Prod 156:112850

    Article  CAS  Google Scholar 

  • Kim M, Shim C, Lee J, Wangchuk C (2022) Hot water treatment as seed disinfection techniques for organic and eco-friendly environmental agricultural crop cultivation. Agriculture 12(8):1081

    Article  Google Scholar 

  • Kłosińska U, Kozik EU, Treder W, Klamkowski K Differential effects of drought stress on germination and seedling growth of cucumber accessions. In: Proceedings of Cucurbitaceae, 2016. pp 217–221

  • Korkmaz A, Uzunlu M, Demirkiran AR (2007) Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiol Plant 29:503–508

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Volume II Water, radiation, salt, and other stresses, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  • Li D, Li C, Sun H, Wang W, Liu L, Zhang Y (2010) Effects of drought on soluble protein content and protective enzyme system in cotton leaves. Front Agric China 4(1):56–62

    Article  Google Scholar 

  • Li C-L, Wang M, Ma X-Y, Zhang W (2014) NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis. Mol Plant 7(10):1508–1521

    Article  CAS  PubMed  Google Scholar 

  • Li J, Cang Z, Jiao F, Bai X, Zhang D, Zhai R (2017) Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. J Saudi Soc Agric 16(1):82–88. https://doi.org/10.1016/j.jssas.2015.03.001

    Article  Google Scholar 

  • Li Y, He N, Hou J, Xu L, Liu C, Zhang J, Wang Q, Zhang X, Wu X (2018) Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front Ecol Evol. https://doi.org/10.3389/fevo.2018.00064

    Article  Google Scholar 

  • Li B, Fan R, Sun G, Sun T, Fan Y, Bai S, Guo S, Huang S, Liu J, Zhang H (2021) Flavonoids improve drought tolerance of maize seedlings by regulating the homeostasis of reactive oxygen species. Plant Soil 461(1):389–405

    Article  CAS  Google Scholar 

  • Li P, Yu J, Feng N, Weng J, Rehman A, Huang J, Tu S, Niu Q (2022) Physiological and transcriptomic analyses uncover the reason for the inhibition of photosynthesis by phosphate deficiency in Cucumis melo L. Int J Mol Sci 23(20):12073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Guo X, Liu L, Liu J, Du N, Guo W (2022) Responses to defoliation of Robinia pseudoacacia L. and Sophora japonica L. are soil water condition dependent. Ann For Sci 79(1):18. https://doi.org/10.1186/s13595-022-01136-w

    Article  Google Scholar 

  • Liu Y, He Z, Xie Y, Su L, Zhang R, Wang H, Li C, Long S (2021) Drought resistance mechanisms of Phedimus aizoon L. Sci Rep 11(1):1–14

    Google Scholar 

  • Lugojan C, Ciulca S (2011) Evaluation of relative water content in winter wheat. J Hortic for Biot 15(2):173–177

    Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik P, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4(8):580–585

    CAS  Google Scholar 

  • Mandizvo T, Odindo AO, Mashilo J, Magwaza LS (2022) Drought tolerance assessment of citron watermelon (Citrullus lanatus var. citroides (LH Bailey) Mansf. ex Greb.) accessions based on morphological and physiological traits. Plant Physiol Biochem 180:106–123

    Article  CAS  PubMed  Google Scholar 

  • Martin-StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely stomatal closure. Ecol Lett 20(11):1437–1447

    Article  PubMed  Google Scholar 

  • Meza I, Siebert S, Döll P, Kusche J, Herbert C, Eyshi Rezaei E, Nouri H, Gerdener H, Popat E, Frischen J (2020) Global-scale drought risk assessment for agricultural systems. Nat Hazards Earth Syst Sci 20(2):695–712

    Article  Google Scholar 

  • Mibei EK, Ambuko J, Giovannoni JJ, Onyango AN, Owino WO (2017) Carotenoid profiling of the leaves of selected African eggplant accessions subjected to drought stress. Food Sci Nutr 5(1):113–122

    Article  CAS  PubMed  Google Scholar 

  • Ming-lian F, Gen-ze L, Qing-hui Y, Xiao-yan Y, Jing-qiao W (2011) Drought tolerance identification of interspecific hybrids from Brassica napus and Brassica juncea by subordinate function values. Chin J Oil Crop Sci 33(4):368–373

    Google Scholar 

  • Minhas PS, Rane J, Pasala RK (2017) Abiotic stresses in agriculture: An overview. In: Minhas PS, Rane J, Pasala RK (eds) Abiotic stress management for resilient agriculture. Springer, Singapore, pp 3–8

    Chapter  Google Scholar 

  • Moller I, Jensen P, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459

    Article  PubMed  Google Scholar 

  • Morales M, Munné-Bosch S (2019) Malondialdehyde: facts and artifacts. Plant Physiol 180(3):1246–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad I, Shalmani A, Ali M, Yang Q-H, Ahmad H, Li FB (2021) Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front Plant Sci 11:615942

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel M, Fatnani D, Parida AK (2021) Silicon-induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations. Plant Physiol Biochem 166:290–313

    Article  CAS  PubMed  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Munoz-Rueda A (2012) Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynth Res 111(3):269–283

    Article  PubMed  Google Scholar 

  • Pilon C, Snider JL, Sobolev V, Chastain DR, Sorensen RB, Meeks CD, Massa AN, Walk T, Singh B, Earl HJ (2018) Assessing stomatal and non-stomatal limitations to carbon assimilation under progressive drought in peanut (Arachis hypogaea L.). J Plant Physiol 231:124–134

    Article  CAS  PubMed  Google Scholar 

  • Popović B, Štajner D, Ždero-Pavlović R, Tumbas-Šaponjac V, Čanadanović-Brunet J, Orlović S (2016) Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.). Plant Physiol Biochem 105:242–250

    Article  PubMed  Google Scholar 

  • Raja V, Qadir SU, Alyemeni MN, Ahmad P (2020) Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech 10(5):1–18

    Article  Google Scholar 

  • Rehman A, Weng J, Li P, Shah IH, Rahman Su, Khalid M, Manzoor MA, Chang L, Niu Q (2023) Green synthesized zinc oxide nanoparticles confer drought tolerance in melon (Cucumis melo L.). Environ Exp Bot 212:105384

    Article  CAS  Google Scholar 

  • Rehman A, Weng J, Li P, Yu J, Rahman Su, Khalid M, Shah IH, Gulzar S, Chang L, Niu Q (2023b) Differential response of two contrasting melon (Cucumis melo L.) genotypes to drought stress. J Plant Biol. https://doi.org/10.1007/s12374-023-09398-1

    Article  Google Scholar 

  • Saepudin A, Khumaida N, Sopandie D, Ardie SW (2017) In vitro selection of four soybean genotypes using PEG for drought tolerance. J Agron Indones (Indonesian Journal of Agronomy) 45(1):14–22

    Article  Google Scholar 

  • Sánchez-Rodríguez E, Rubio-Wilhelmi MM, Cervilla LM, Blasco B, Rios JJ, Rosales MA, Romero L, Ruiz JM (2010) Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci 178(1):30–40

    Article  Google Scholar 

  • Sayar R, Khemira H, Kameli A, Mosbahi M (2008) Physiological tests as predictive appreciation for drought tolerance in durum wheat (Triticum durum Desf.). Agron Res 6:79–90

    Google Scholar 

  • Sebnem K (2012) Effects of drought and salt stresses on growth, stomatal conductance, leaf water and osmotic potentials of melon genotypes (Cucumis melo L.). Afr J Agric Res 7(5):775–781

    Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey R (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161(6):1135–1144

    Article  CAS  Google Scholar 

  • Shakeel AA, Xiao-yu X, Long-chang W, Muhammad FS, Chen M, Wang L (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • Sharma SP, Leskovar DI, Crosby KM, Volder A, Ibrahim A (2014) Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation. Agric Water Manage 136:75–85

    Article  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci 14(3):407–426. https://doi.org/10.1007/s11157-015-9372-8

    Article  CAS  Google Scholar 

  • Smirnoff N (1995) Environment and plant metabolism: flexibility and acclimation. BIOS Scientific publishers, Abingdon

    Google Scholar 

  • Strzałka K, Kostecka-Gugała A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol 50(2):168–173. https://doi.org/10.1023/A:1022960828050

    Article  Google Scholar 

  • Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Change 4(1):17–22

    Article  Google Scholar 

  • Vazan S (2002) Effects of chlorophyll parameters and photosynthesis efficiency in difference beet. Assay Ph D Islamic azad university science and research Tehran-Branch, p 285

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Meng B, Zhong S, Wang D, Ma J, Sun W (2018a) Aboveground biomass and root/shoot ratio regulated drought susceptibility of ecosystem carbon exchange in a meadow steppe. Plant Soil 432(1):259–272

    Article  CAS  Google Scholar 

  • Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, Gao H, Mei L (2018b) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open 7(11):bio035279

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu H, Yu F, Hu B, Jia Y, Sha H, Zhao H (2019) Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Sci Rep 9(1):1–11

    Google Scholar 

  • Wang W, Zheng W, Lv H, Liang B, Jin S, Li J, Zhou W (2022) Animal-derived plant biostimulant alleviates drought stress by regulating photosynthesis, osmotic adjustment, and antioxidant systems in tomato plants. Sci Hortic 305:111365

    Article  CAS  Google Scholar 

  • Weng J, Li P, Rehman A, Wang L, Gao X, Niu Q (2021) Physiological response and evaluation of melon (Cucumis melo L.) germplasm resources under high temperature and humidity stress at seedling stage. Sci Hortic 288:110317. https://doi.org/10.1016/j.scienta.2021.110317

    Article  CAS  Google Scholar 

  • Weng J, Rehman A, Li P, Chang L, Zhang Y, Niu Q (2022) Physiological and transcriptomic analysis reveals the responses and difference to high temperature and humidity stress in two melon genotypes. Int J Mol Sci 23(2):734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Xiong X, Arif S, Gao L, Zhao L, Shah IH, Zhang Y (2020) A calmodulin-like CmCML13 from Cucumis melo improved transgenic Arabidopsis salt tolerance through reduced shoot’s Na+, and also improved drought resistance. Plant Physiol Biochem 155:271–283

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Sun D, Cen H, Xu H, Weng H, Yuan F, He Y (2018) Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00603

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Dai A (2015) The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J Clim 28(11):4490–4512

    Article  Google Scholar 

  • Zhou R, Yu X, Ottosen C-O, Rosenqvist E, Zhao L, Wang Y, Yu W, Zhao T, Wu Z (2017) Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol 17(1):24. https://doi.org/10.1186/s12870-017-0974-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang J, Wang Y, Chi Y, Zhou L, Chen J, Zhou W, Song J, Zhao N, Ding J (2020) Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ 8:e10046

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the embarked fund for Shanghai Melon and Watermelon Industry Technical System, China (2017-2021).

Author information

Authors and Affiliations

Authors

Contributions

AR & MK: Conceptualization, Methodology, Experimentation, Data analysis, Writing—Original draft. JW & PL: Investigation, Writing—Review & editing. SuR: Conceptualization, Writing—Review & editing. HIS & SG: Visualization, Writing – Review & editing. ST & FN: Data analysis, Validation, Writing—Review & editing. QN: Supervision, Funding Acquisition, Data analysis, Writing—Review & editing. LC: Supervision, Validation, Writing—Review & editing. All authors have read and agreed to the final draft of the manuscript.

Corresponding authors

Correspondence to Qingliang Niu or Liying Chang.

Ethics declarations

Competing interest

The authors declare no known competing interest.

Additional information

Communicated by Vijay Pratap Singh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, A., Khalid, M., Weng, J. et al. Exploring drought tolerance in melon germplasm through physiochemical and photosynthetic traits. Plant Growth Regul 102, 603–618 (2024). https://doi.org/10.1007/s10725-023-01080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-023-01080-3

Keywords

Navigation