Skip to main content

Advertisement

Log in

Comparative transcriptomics reveals key genes contributing to the differences in drought tolerance among three cultivars of foxtail millet (Setaria italica)

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Foxtail millet (Setaria italica L.) is an important food crop with strong drought stress tolerance. The response of foxtail millet to drought stress is a complex regulatory network. It is of great guiding significance for agricultural production to continuously explore candidate genes of foxtail millet drought resistance and reveal the molecular regulatory mechanism and metabolic pathway of foxtail millet drought tolerance. This study investigated three different cultivars of foxtail millet with different drought resistance. Drought stress reduced the water and chlorophyll content, and increased the Malondialdehyde (MDA) level and soluble protein of foxtail millet leaves. From strong to weak, the drought resistance order was Jigu39, Jingu21, and Longgu16. The transcriptome analysis of these three cultivars was carried out. 2954, 1531, and 2344 deferentially expressed genes under drought stress were identified in Jigu39, Jingu21, and Longgu16. The GO and KEGG pathway analysis identified DEGs significantly enriched in photosynthesis, chlorophyll metabolism, amino acid metabolism, and carbohydrate metabolism in all three cultivars. In addition, we identified 46 genes whose trends of transcription change were consistent with the drought resistance trends among three cultivars of foxtail millet. Among them, 32 genes were first identified related to drought response in foxtail millet, which was worth further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive (Chen et al. 2021) in National Genomics Data Center (Members and Partners 2022), China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (PRJCA009384; CRA006802) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa/.

References

  • Aguilar ML, Espadas FL, Coello J, Maust BE, Trejo C, Robert ML, Santamaria JM (2000) The role of abscisic acid in controlling leaf water loss, survival and growth of micropropagated Tagetes erecta plants when transferred directly to the field. J Exp Bot 51:1861–1866

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • Baillo EH, Kimotho RN, Zhang ZB, Xu P (2019) Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes-Basel 10(10):771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartwal A, Pande A, Sharma P, Arora S (2016) Intervarietal variations in various oxidative stress markers and anti-oxidant potential of finger millet (Eleusine coracana) subjected to drought stress. J Environ Biol 37:517–522

    CAS  PubMed  Google Scholar 

  • Beasley JT, Bonneau JP, Johnson AAT (2017) Characterization of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to strategy II iron uptake in bread wheat (Triticum aestivum L.). PLoS One 12:e0177061

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang XW, Wu XM, Mitros T, Triplett J, Yang XH, Ye CY, Mauro-Herrera M, Wang L, Li PH, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555-+

    Article  CAS  PubMed  Google Scholar 

  • Bhatt D, Negi M, Sharma P, Saxena SC, Dobriyal AK, Arora S (2011) Responses to drought induced oxidative stress in five finger millet varieties differing in their geographical distribution. Physiol Mol Biol Plants 17:347–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. P Natl Acad Sci USA 101:4706–4711

    Article  CAS  Google Scholar 

  • Carmody M, Waszczak C, Idanheimo N, Saarinen T, Kangasjarvi J (2016) ROS signalling in a destabilized world: a molecular understanding of climate change. J Plant Physiol 203:69–83

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry S, Sidhu GPS (2022) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 41:1–31

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Chen X, Zhang S, Zhu J, Tang B, Wang A, Dong L, Zhang Z, Yu C, Sun Y, Chi L, Chen H, Zhai S, Sun Y, Lan L, Zhang X, Xiao J, Bao Y, Wang Y, Zhang Z, Zhao W (2021) The genome sequence archive family: toward explosive data growth and diverse data types. Genomics Proteomics Bioinform 19:578–583

    Article  Google Scholar 

  • C-N Members Partners (2022) Database resources of the national genomics data center, china national center for bioinformation in 2022. Nucleic Acids Res 50:D27–D38

    Article  Google Scholar 

  • Coca MA, Almoguera C, Thomas TL, Jordano J (1996) Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Mol Biol 31:863–876

    Article  CAS  PubMed  Google Scholar 

  • Corrales AR, Carrillo L, Lasierra P, Nebauer SG, Dominguez-Figueroa J, Renau-Morata B, Pollmann S, Granell A, Molina RV, Vicente-Carbajosa J (2017) Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant, Cell Environ 40:748

    Article  CAS  PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Diniz AL, da Silva DIR, Lembke CG, Costa MDL, Ten-Caten F, Li F, Vilela RD, Menossi M, Ware D, Endres L, Souza GM (2020) Amino acid and carbohydrate metabolism are coordinated to maintain energetic balance during drought in sugarcane. Int J Mol Sci 21(23):9124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Wang C, Han X, Tang S, Liu S, Xia X, Yin W (2014) A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochem Biophys Res Commun 450:453–458

    Article  CAS  PubMed  Google Scholar 

  • Dugas DV, Monaco MK, Olsen A, Klein RR, Kumari S, Ware D, Klein PE (2011) Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genomics 12(1):1–21

    Article  Google Scholar 

  • Eglous NM, Zainon MA, Hassana M, Zainal Z (2013) Changes in oxidative stress in transgenic RNAi ACO1 tomato fruit during ripening. AIP Conf Proc 1571:215–221

    Article  CAS  Google Scholar 

  • Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics 9:377–396

    Article  CAS  PubMed  Google Scholar 

  • Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM (2017) Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Galmes J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175:81–93

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and anti-oxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gorski C, Riddle R, Toporik H, Da Z, Dobson Z, Williams D, Mazor Y (2022) The structure of the Physcomitrium patens photosystem I reveals a unique Lhca2 paralogue replacing Lhca4. Nat Plants 8:307–316

    Article  CAS  PubMed  Google Scholar 

  • Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Sanchez VM, Castillejo MA, Lopez-Hidalgo C, Alconada AMM, Jorrin-Novo JV, Rey MD (2021) Changes in the transcript and protein profiles of Quercus ilex seedlings in response to drought stress. J Proteomics 243:104263

    Article  CAS  PubMed  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    Article  CAS  PubMed  Google Scholar 

  • He L, Zhang B, Wang X, Li H, Han Y (2015) Foxtail millet: nutritional and eating quality, and prospects for genetic improvement. Front Agric Sci Eng 2:124–133

    Article  Google Scholar 

  • Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y, Cai R, Liang X, Yang G, He G (2013) TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ 36:1449–1464

    Article  CAS  PubMed  Google Scholar 

  • Impa SM, Nadaradjan S, Jagadish SVK (2012) Drought stress induced reactive oxygen species and anti-oxidants in plants. Abiotic stress responses in plants. Springer, New York, pp 131–147

    Chapter  Google Scholar 

  • Jiang M, Chen H, He S, Wang L, Chen AJ, Liu C (2018) Sequencing, characterization, and comparative analyses of the plastome of Caragana rosea var. rosea. Int J Mol Sci 19:1419

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Fang J, Du M, Gao Y, Fang J, Jiang Z (2021) Integrated transcriptomics and metabolomics analyses reveal benzo[a]pyrene enhances the toxicity of mercury to the Manila clam Ruditapes philippinarum. Ecotoxicol Environ Saf 213:112038

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343

    Article  PubMed  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Ricachenevsky FK, Punshon T (2021) Functional overlap of two major facilitator superfamily transporter, ZIF1, and ZIFL1 in zinc and iron homeostasis. Biochem Biophys Res Commun 560:7–13

    Article  CAS  PubMed  Google Scholar 

  • Lempiainen H, Shore D (2009) Growth control and ribosome biogenesis. Curr Opin Cell Biol 21:855–863

    Article  PubMed  Google Scholar 

  • Lenka SK, Katiyar A, Chinnusamy V, Bansal KC (2011) Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J 9:315–327

    Article  CAS  PubMed  Google Scholar 

  • Li PH, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62:3031–3037

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yi H (2020) Photosynthetic responses of Arabidopsis to SO2 were related to photosynthetic pigments, photosynthesis gene expression and redox regulation. Ecotoxicol Environ Saf 203:111019

    Article  CAS  PubMed  Google Scholar 

  • Liu BL, Zhang L, Sun Y, Xue JA, Gao CY, Yuan LX, Wang JP, Jia XY, Li RZ (2016) Genome-wide characterization of bZIP transcription factors in foxtail millet and their expression profiles in response to drought and salt stresses. Chin Bull Bot 51:473–487

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lou D, Wang H, Yu D (2018) The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice. BMC Plant Biol 18:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magwanga RO, Kirungu JN, Lu P, Yang X, Dong Q, Cai X, Xu Y, Wang X, Zhou Z, Hou Y, Nyunja R, Agong SG, Hua J, Zhang B, Wang K, Liu F (2019) Genome wide identification of the trihelix transcription factors and overexpression of Gh_A05G2067 (GT-2), a novel gene contributing to increased drought and salt stresses tolerance in cotton. Physiol Plant 167:447–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meher, Shivakrishna P, AshokReddy K, Manohar Rao D (2018) Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi J Biol Sci 25:285–289

    Article  CAS  PubMed  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Ming T, Wu Y, Huan H, Jiang Q, Su C, Lu C, Zhou J, Li Y, Su X (2021) Integrative proteomics and metabolomics profiling of the protective effects of Phascolosoma esculent ferritin on BMSCs in Cd(II) injury. Ecotoxicol Environ Saf 212:111995

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Cherkauer KA (2010) Retrospective droughts in the crop growing season: implications to corn and soybean yield in the Midwestern United States. Agric For Meteorol 150:1030–1045

    Article  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Bba-Gene Regul Mech 1819:86–96

    CAS  Google Scholar 

  • Mukami A, Ngetich A, Mweu C, Oduor RO, Muthangya M, Mbinda WM (2019) Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties. Physiol Mol Biol Plants 25:837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genetics 128:1–14

    Article  CAS  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant SR, Irigoyen S, Doust AN, Scholthof KBG, Mandadi KK (2016) Setaria: a food crop and translational research model for C-4 grasses. Front Plant Sci 7:1885

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng RH, Zhang BH (2021) Foxtail millet: a new model for C4 plants. Trends Plant Sci 26:199–201

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Jha S, Srivastava PS, Sreenivasulu N, Prasad M (2011) Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. J Plant Physiol 168:280–287

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Xie S, Liu Y, Yi F, Yu J (2013) Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol 83:459–473

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Chen EY, Li FF, Yu X, Liu ZY, Yang YB, Wang RF, Zhang HW, Wang HL, Liu B, Guan YA, Ruan Y (2020) Genome-wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L.). Int J Mol Sci 21:8520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi M, Kordrostami M, Maleki M, ModaresKia M (2016) Investigating the effect of drought stress on expression of WRKY1 and EREBP1 genes and anti-oxidant enzyme activities in lemon balm (Melissa officinalis L.). 3 Biotech 6:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12:1–14

    Article  Google Scholar 

  • Sahid S, Roy C, Paul S, Datta R (2020) Rice lectin protein r40c1 imparts drought tolerance by modulating S-adenosylmethionine synthase 2, stress-associated protein 8 and chromatin-associated proteins. J Exp Bot 71:7331–7346

    Article  CAS  PubMed  Google Scholar 

  • Seven M, Akdemir H (2020) DOF, MYB and TCP transcription factors: their possible roles on barley germination and seedling establishment. Gene Exp Patterns 37:119116

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of anti-oxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    Article  CAS  Google Scholar 

  • Shi WP, Cheng JY, Wen XJ, Wang JX, Shi GY, Yao JY, Hou LY, Sun Q, Xiang P, Yuan XYY, Dong SQ, Guo PY, Guo J (2018) Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.). Peerj 6:e4752

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  PubMed  Google Scholar 

  • Song M, Ma FF, Hou SY, Zhang YM, Liu LL, Geng LY, Jiang XY, Li HY, Han YH (2016) Ubiquitin ligase E3 genes mining based on expression profiles under PEG stress in foxtail millet. J Shanxi Agric Univ (natural Science Edition) 36:860–867

    CAS  Google Scholar 

  • Tang S, Li L, Wang YQ, Chen QN, Zhang WY, Jia GQ, Zhi H, Zhao BH, Diao XM (2017a) Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci Rep. https://doi.org/10.1038/s41598-017-08854-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang S, Li L, Wang Y, Chen Q, Zhang W, Jia G, Zhi H, Zhao B, Diao X (2017b) Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci Rep 7:10009

    Article  PubMed  PubMed Central  Google Scholar 

  • Tapia G, Gonzalez M, Burgos J, Vega MV, Mendez J, Inostroza L (2021) Early transcriptional responses in Solanum peruvianum and Solanum lycopersicum account for different acclimation processes during water scarcity events. Sci Rep 11:15961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarelkina TV, Galibina NA, Moshchenskaya YL, Novitskaya LL (2020) In silico analysis of regulatory cis-elements in the promoters of genes encoding apoplastic invertase and sucrose synthase in silver birch. Russ J Dev Biol 51:323–335

    Article  CAS  Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511-U174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsou PL, Lee SY, Allen NS, Winter-Sederoff H, Robertson D (2012) An ER-targeted calcium-binding peptide confers salt and drought tolerance mediated by CIPK6 in Arabidopsis. Planta 235:539–552

    Article  CAS  PubMed  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Wang Q, Hillwig ML, Wu Y, Peters RJ (2012) CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism. Plant Physiol 158:1418–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang PF, Wang HL, Wang YM, Ren FS, Liu W (2018) Analysis of bHLH genes from foxtail millet (Setaria italica) and their potential relevance to drought stress. Plos ONE 13:e0207344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Hao DD, Wang XX, Zhang HY, Yang P, Zhang LZ, Zhang B (2021) Genome-wide identification and expression analysis of the SNARE genes in Foxtail millet (Setaria italica) reveals its roles in drought stress. Plant Growth Regul 95:355–369

    Article  CAS  Google Scholar 

  • Xiong B, Qiu X, Huang S, Wang X, Zhang X, Dong T, Wang T, Li S, Sun G, Zhu J, Wang Z (2019) Physiological and transcriptome analyses of photosynthesis and chlorophyll metabolism in variegated Citrus (Shiranuhi and Huangguogan) seedlings. Sci Rep 9:15670

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu BQ, Gao XL, Gao JF, Li J, Yang P, Feng BL (2019) Transcriptome profiling using RNA-seq to provide insights into foxtail millet seedling tolerance to short-term water deficit stress induced by PEG-6000. J Integr Agric 18:2457–2471

    Article  CAS  Google Scholar 

  • Yu Q, Li C, Zhang J, Tian Y, Zhang LJP (2020) Genome-wide identification and expression analysis of the dof gene family under drought stress in tea (Camellia sinensis). PeerJ 8:e9269

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    Article  CAS  PubMed  Google Scholar 

  • Zhang GY, Liu X, Quan ZW, Cheng SF, Xu X, Pan SK, Xie M, Zeng P, Yue Z, Wang WL, Tao Y, Bian C, Han CL, Xia QJ, Peng XH, Cao R, Yang XH, Zhan DL, Hu JC, Zhang YX, Li HN, Li H, Li N, Wang JY, Wang CC, Wang RY, Guo T, Cai YJ, Liu CZ, Xiang HT, Shi QX, Huang P, Chen QC, Li YR, Wang J, Zhao ZH, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZF, Li YY, Xiao BZ (2016) Comparative transcriptome analysis highlights the crucial roles of photosynthetic system in drought stress adaptation in upland rice. Sci Rep 6:19349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QX, Zhao YF, Zhang JL, Li XK, Ma FF, Duan M, Zhang B, Li HY (2021) The responses of the lipoxygenase gene family to salt and drought stress in foxtail millet (Setaria italica). Life 11:1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang RL, Zhi H, Li YH, Guo ER, Feng GJ, Tang S, Guo WX, Zhang LL, Jia GQ, Diao XM (2022) Response of multiple tissues to drought revealed by a weighted gene co-expression network analysis in foxtail millet [Setaria italica (L) P. Beauv]. Front Plant Sci 12:746166

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao ZY, Tang S, Zhang YM, Yue JJ, Xu JQ, Tang WQ, Sun YX, Wang RJ, Diao XM, Zhang BW (2021) Evolutionary analysis and functional characterization of SiBRI1 as a brassinosteroid receptor gene in foxtail millet. BMC Plant Biol 21(1):1–15

    Article  CAS  Google Scholar 

  • Zheng J, Fu JJ, Gou MY, Huai JL, Liu YJ, Jian M, Huang QS, Guo XY, Dong ZG, Wang HZ, Wang GY (2010) Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol 72:407–421

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the colleagues in our laboratory for providing useful discussions and technical assistance.

Funding

This work was supported by the National Natural Science Foundation of China (No. 32000210), Research Project Supported by Shanxi Scholarship Council of China (No. 2021-015), the open funding of State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University (No. YJHZKF2108), and National Key Research and Development Program of China (No. 2020YFD1001401) to BZ. The Innovative projects for graduate education in Shanxi province (No. 2021Y131) to HW. The Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L0104), National Natural Science Foundation of China (No. 32101384), and Science Foundation for Youths of Shanxi Province (No. 20210302124150) to PY. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by BZ, YG, and PY. Experiments were performed by YG, DDH, HW, and XXW. BZ and YG, HW, and PY analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ben Zhang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Xingchun Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Hao, D., Wang, X. et al. Comparative transcriptomics reveals key genes contributing to the differences in drought tolerance among three cultivars of foxtail millet (Setaria italica). Plant Growth Regul 99, 45–64 (2023). https://doi.org/10.1007/s10725-022-00875-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00875-0

Keywords

Navigation