Skip to main content

Advertisement

Log in

Climate change and the ecophysiology of Bertholletia excelsa seedlings

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The Bertholletia excelsa a species native to the Amazon region of great national and international interest, mainly for the nutritional benefits of its seeds. However, there is still no information on the ecophysiological responses of B. excelsa to climate change. Thus, the objective of this work was to evaluate the effect of climate change on the ecophysiology of B. excelsa seedlings. To do so, B. excelsa seedlings were conducted, for 91 days, in three different climatic scenarios: current Amazon; RCP4.5 (current average temperature in the Amazon + 2.5 °C and 538 ppm of carbon dioxide concentration i.e. [CO2]); and RCP8.5 (+ 4.5 °C and 936 ppm [CO2]). In addition, two irrigation levels were applied within each climatic scenario: seedlings maintained at 90% (not stressed) and 40% (stressed) of the water holding capacity of the substrate. Gaseous exchanges, water status, extravasation of electrolytes, chlorophyll parameters and total dry mass were evaluated. The results showed that climate change increased not only gas exchange variables, but all the ecophysiological processes of B. excelsa seedlings, even when subjected to water stress. This result led to a higher total dry matter production, especially under the conditions of the RCP8.5 scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amaral GC, Pezzopane JEM, Nóia Júnior RS, Fonseca MDS, Toledo JV, Xavier TMT, Oliveira BS, Martínez MF, Jerônimo Júnior RAC, Gonçalvez EO (2021) Ecophysiology of Pilocarpus microphyllus in response to temperature, water availability and vapour pressure deficit. Trees 35, 543–555. https://doi.org/10.1007/s00468-020-02055-xTrees, 2021

  • Amaral GC, Pezzopane JEM, Nóia Júnior RS, Martínez MF, Fonseca MDS, Gibson EL, Toledo JV, Pezzopane JRM, Klippel VH, Xavier TMT (2022) Pilocarpus microphyllus seedling growth threatened by climate change: an ecophysiological approach. Theor Appl Climatol. https://doi.org/10.1007/s00704-021-03831-6Plants subjected to higher atmospheric concentrations of CO2, rising air temperatures and VPD present changes in photosynthetic machinery (Way et al., 2015; Amaral et al., 2021)". The citation Amaral et al., 2021 needs to be replaced with Amaral et al., 2022

    Article  Google Scholar 

  • Aranjuelo I, Pardo A, Biel C, Savé R, Azcón-Bieto J, Nogués S (2009) Leaf carbon management in slow‐growing plants exposed to elevated CO2. Glob Change Biol 15:97–109. https://doi.org/10.1111/j.1365-2486.2008.01829.x

    Article  Google Scholar 

  • Ariane MK, Maristela M, Silmara MM, Renata HS, Karine SN, Helyde AM, Augusto KJ (2015) Properties of Brazil nuts: A review. Afr J Biotechnol 14:642–648. https://doi.org/10.5897/ajb2014.14184

    Article  Google Scholar 

  • Azevedo GFC, Marenco RA (2012) Growth and physiological changes in saplings of Minquartia guianensis and Swietenia macrophylla during acclimation to full sunlight. Photosynthetica 50:86–94. https://doi.org/10.1007/s11099-012-0001-2

    Article  CAS  Google Scholar 

  • Azevedo GFC (2014) Photosynthetic parameters and growth in seedlings of Bertholletia excelsa and Carapa guianensis in response to pre-acclimation to full sunlight and mild water stress. Acta Amazônica 44(1):67–78

    Article  Google Scholar 

  • Caemmerer SV, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637. https://doi.org/10.1111/pce.12449

    Article  CAS  Google Scholar 

  • Cardoso SL (1997) Fotofísica de carotenóides e o papel antioxidante de β-caroteno. Quim Nova 20:535–540

    Article  CAS  Google Scholar 

  • Ceulemans BR, Mousseau M (1994) Effects of elevated atmospheric CO2 on woody plants. New Phytologist Trust 127(3):425–446

    Article  Google Scholar 

  • Costa GF, Marenco RA (2007) Fotossíntese, condutância estomática e potencial hídrico foliar em árvores jovens de andiroba (Carapa guianensis). Acta Amazonica 37(2):229–234

    Article  Google Scholar 

  • Dionisio LFS, Condé TM, Gomes JP, Martins WBR, Silva MT, Silva MW (2017) Caracterização morfométrica de árvores solitárias de Bertholletia excelsa H.B.K. no sudeste de Roraima. Revista Agro@mbiente On-line, 11, 2, 163. https://doi.org/10.18227/1982-8470ragro.v11i2.3835

  • Da Silva JR, Patterson AE, Rodrigues WP, Campostrini E, Griffin KL (2017) Photosynthetic acclimation to elevated CO2 combined with partial rootzone drying results in improved water use efficiency, drought tolerance and leaf carbon balance of grapevines (Vitis labrusca). Environ Exp Bot 134:82–95. https://doi.org/10.1016/j.envexpbot.2016.11.007

    Article  CAS  Google Scholar 

  • Da Silva KE, De Souza CR, De Azevedo CP, Rossi LMB (2015) Dinâmica florestal, estoque de carbono e fitossociologia de uma floresta densa de terra-firme na Amazônia Central. Sci For Sci 43:193–201

    Google Scholar 

  • Drake JE, Tjoelker MG, Vårhammar A, Medlyn BE, Reich PB, Leigh A, Pfautsch S, Blackman CJ, López R, Aspinwall MJ, Crous KY, Duursma RA, Kumarathunge D, De Kauwe MG, Jiang M, Nicotra AB, Tissue DT, Choat B, Atkin OK, Barton CVM (2018) Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biology 24:2390–2402. https://doi.org/10.1111/gcb.14037

    Article  PubMed  Google Scholar 

  • Dusenge ME, Way DA (2017) Warming puts the squeeze on photosynthesis – lessons from tropical trees. J Exp Bot 68:2073–2077. https://doi.org/10.1093/jxb/erx114

    Article  CAS  PubMed Central  Google Scholar 

  • Espasandin FD, Calzadilla PI, Maiale SJ, Ruiz OA, Sansberro PA (2018) Overexpression of the arginine decarboxylase gene improves Tolerance to Salt Stress in Lotus tenuis Plants. J Plant Growth Regul Ger 37:156–165

    Article  CAS  Google Scholar 

  • Falker (2008) Automação agrícola. Manual do medidor eletrônico de teor clorofila (ClorofiLOG/CFL 1030). Porto Alegre, p. 33

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Sustain. Agric. Springer Netherlands, Dordrecht, pp 153–188. doi:https://doi.org/10.1007/978-90-481-2666-8_12

    Book  Google Scholar 

  • Fauset S, Oliveira L, Buckeridge MS, Foyer CH, Galbraith D, Tiwari R, Gloor M (2019) Contrasting responses of stomatal conductance and photosynthetic capacity to warming and elevated CO2 in the tropical tree species Alchornea glandulosa under heatwave conditions. Environ Exp Bot 158:28–39. https://doi.org/10.1016/j.envexpbot.2018.10.030

    Article  CAS  Google Scholar 

  • Freire JC, Ribeiro MAV, Bahia VG, Lopes AS, Aquino LH (1980) Respostas do milho cultivado em casa de vegetação a níveis de água em solos da região de Lavras (MG). Revista Brasileira de Ciência do Solo, 4:5–8

  • Galle A, Florez-Sarasa I, Tomas M, Pou A, Medrano H, Ribas-Carbo M, Flexas (2009) The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation?, Journal of Experimental Botany, Volume 60, Issue 8, May 2009, Pages 2379–2390, https://doi.org/10.1093/jxb/erp071

  • Griffin KL, Seemann JR (1956) Plants, CO2, and photosynthesis in the 21st century. Chem Biol 3:245–254

    Article  Google Scholar 

  • Guo X-Y, Zhang X-S, Huang Z-Y (2010) Drought tolerance in three hybrid poplar clones submitted to different watering regimes. J Plant Ecol 3(2):79–87. https://academic.oup.com/jpe/article-lookup/doi/https://doi.org/10.1093/jpe/rtq007

    Article  Google Scholar 

  • Hartley HO (1950) The use of range in analysis of variance. Biometrika 37(3/4):271. doi:https://doi.org/10.2307/2332380

    Article  CAS  PubMed  Google Scholar 

  • Hideg É, Strid A (2017) The effects of UV-B on the biochemistry and metabolism of plants. UV-B Radiat. plant life Mol. Biol. to Ecol. CABI, Wallingford, pp 90–110. http://www.cabi.org/cabebooks/ebook/20173304605

    Chapter  Google Scholar 

  • Intergovernmental panel on climate change (IPCC). Climate change 2014: synthesis report. In: Pachauri RK, Meyer LA (Org.). Contrib. Work. Groups I, II III to Fifth Assess. Rep. Intergov. Panel Clim. Chang. Pachauri, ed. [S.l: s.n.] (2014) p. 151 p

  • IPCC (2013) IPCC. Climate Change 2013: The physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Edited by T. F. Stocker Cambridge/New York, Cambridge University Press

  • IUCN(2019) 2017. The IUCN Red List of Threatened Species. Version 2017-1. Disponível em: <http://www.iucnredlist.org

  • Jansen M, Guariguata MR, Chiriboga-Arroyo F, Quaedvlieg J, Vargas QFM, Arroyo QE, García RMR, Corvera-Gomringer R, Kettle CJ (2021) Forest Degradation and Inter-annual Tree Level Brazil Nut Production in the Peruvian Amazon. Front Forests Global Change 3:155. DOI: https://doi.org/10.3389/ffgc.2020.525533

    Article  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D(2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports, United Kingdom, v. 7:42039, p. 1–14, 2017

  • Jordan B, Strid Å, Wargent J(2016) What role does UVB play in determining photosynthesis? Handbook of photosynthesis, 3rd edition, Edition: 3rd edition, Chapter: Chap. 16: 275–286. Doi:https://doi.org/10.1201/b19498-21

  • Kumar R, Harikrishna, Barman D, Ghimire OP, Gurumurthy S, Singh PK, Chinnusamy V, Padaria JC, Arora A(2022) Stay-green trait serves as yield stability attribute under combined heat and drought stress in wheat (Triticum aestivum L.). Plant Growth Regulation, 96, 67–78 (2022). https://doi.org/10.1007/s10725-021-00758-w

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876. https://doi.org/10.1093/jxb/erp096

    Article  CAS  PubMed  Google Scholar 

  • Leakey ADB, Press MC, Scholes JD (2002) High-temperature inhibition of photosynthesis is greater under sunflecks than uniform irradiance in a tropical rain forest tree seedling. Plant Cell Environ 26:1681–1690. https://doi.org/10.1046/j.1365-3040.2003.01086.x

    Article  Google Scholar 

  • Lima ALS, DaMatta FM, Pinheiro HA, Totola MR, Loureiro ME (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot 47:239–247. https://doi.org/10.1016/S0098-8472(01)00130-7

    Article  CAS  Google Scholar 

  • Luo Y, Field CB, Mooney HA (1994) Predicting responses of photosynthesis and root fraction to elevated [CO2] a: interactions among carbon, nitrogen, and growth. Plant Cell and Environment v 17(11):1195–1204

    Article  Google Scholar 

  • Lurgi M, López BC, Montoya JM (2012) Climate change impacts on body size and food web structure on mountain ecosystems. Philos Trans R Soc B Biol Sci 367:3050–3057. https://doi.org/10.1098/rstb.2012.0239

    Article  Google Scholar 

  • Machado MR, Souza RC, Sampaio PdeTB, Ferraz JBS (2017) Aspectos silviculturais da castanha-do-Brasil (Bertholletia excelsa Humb. e Bonpl) biotaamazonia 7:41–44. https://doi.org/10.18561/2179-5746

    Article  Google Scholar 

  • Marchin RM, Broadhead AA, Bostic LE, Dunn RR, Hoffmann WA (2016) Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. Plant Cell Environ 39:2221–2234. https://doi.org/10.1111/pce.12790

    Article  CAS  PubMed  Google Scholar 

  • Marenco RA, Antezana-Vera SA, Gouvêa PR dos, Camargo S, Oliveira MAB, Santos MF JKdaS (2014) Fisiologia de espécies florestais da Amazônia: fotossíntese, respiração e relações hídricas. Rev Ceres 61:786–799. https://doi.org/10.1590/0034-737x201461000004

    Article  Google Scholar 

  • Martinelli G, Moraes MA (2013) Livro vermelho da flora do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro & Andrea Jakobson, Rio de Janeiro

    Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiology B: Biology v 137:116–126

    Article  CAS  Google Scholar 

  • Nóia Júnior RS, Amaral GC, Pezzopane JEM, Fonseca MDS, Silva APC, Xavier TMT (2019) Ecophysiological acclimatization to cyclic water stress in Eucalyptus. J Forestry Res 31(3):797–806. doi:https://doi.org/10.1007/s11676-019-00926-9

    Article  CAS  Google Scholar 

  • Nóia Júnior RS, Pezzopane JEM, Vinco JS, Xavier TMT, Cecílio RA, Pezzopane JRM (2018) Characterization of photosynthesis and transpiration in two rubber tree clones exposed to thermal stress. Brazilian J Bot 41(4):785–794. doi:https://doi.org/10.1007/s40415-018-0495-3

    Article  Google Scholar 

  • Pereira AR, Angelocci LR, Sentelhas PC (2002) Agrometeorologia: fundamentos e aplicações práticas. Agropecuária, Guaíba

    Google Scholar 

  • Core Team R(2017) R: A language and environment for statistical computing. R Found. Stat. Comput., Vienna, Austria (2017). https://www.R-proje/ct.org

  • Ray D, Dey SK, Das G (2004) Significance of the leaf area ratio in hevea brasiliensis under high irradiance and low temperature stress. Photosynthetica 42(1):93–97. http://link.springer.com/https://doi.org/10.1023/B:PHOT.0000040575.92512.ab

    Article  Google Scholar 

  • Reich PB, Sendall KM, Stefanski A, Wei X, Rich RL, Montgomery RA (2016) Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531:633–636. https://doi.org/10.1038/nature17142

    Article  CAS  PubMed  Google Scholar 

  • Robredo A, Pérez-López U, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2010) Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biol Plant 54:285–292. https://doi.org/10.1007/s10535-010-0050-y

    Article  CAS  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30(9):1086–1106

    Article  CAS  Google Scholar 

  • Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012) Photosynthetic response of Tempranillo grapevine to climate change scenarios. Ann Appl Biol 161:277–292. https://doi.org/10.1111/j.1744-7348.2012.00572.x

    Article  CAS  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611

    Article  Google Scholar 

  • Shimpl FC, Ferreira MJ, Jaquetti RK, Martins SCV, Gonçalves JFC (2019) Physiological responses of young Brazil nut (Bertholletia excelsa) plants to drought stress and subsequent rewatering. Flora Morphol Distrib Funct Ecol Plants 252:10–17. https://doi.org/10.1016/j.flora.2019.02.001

    Article  Google Scholar 

  • Silva PFN, Souza CCLF, Chagas JRM, Maciel GM, Marques DJ, Lobato AK, da Silva S, Ferreira MHL, Barbosa TR, Braga MAM, Correa RO, Alves TBC, Barros Dde GAR, Sena S JR (2016) Photosynthetic pigments and carbohydrates in young Brazil nut (Bertholletia excelsa H.B.K.) plants exposed to moderate and severe water deficiency. Aust J Crop Sci 10:920–925. https://doi.org/10.21475/ajcs.2016.10.07.p7105

    Article  CAS  Google Scholar 

  • Slot M, Winter K (2017) Photosynthetic acclimation to warming in tropical forest tree seedlings. J Exp Bot 68:2275–2284. https://doi.org/10.1093/jxb/erx071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (2013) Fisiologia vegetal, 5 edn. Artmed, Porto Alegre, p 918

    Google Scholar 

  • Tardieu F, Granier C, Muller B (2011) Water deficit and growth. Co-ordinating processes without an orchestrator? Curr Opin Plant Biol 14(3):283–289. https://linkinghub.elsevier.com/retrieve/pii/S1369526611000070

    Article  Google Scholar 

  • Thomas E, Atkinson R, Kettle C (2018) Fine-scale processes shape ecosystem service provision by an Amazonian hyperdominant tree species. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-29886-6

    Article  CAS  Google Scholar 

  • Way DA, Oren R, Kroner Y (2015) The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling. Plant Cell Environ 38:991–1007. https://doi.org/10.1111/pce.12527

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119(1–2):101–117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by FAPES (Fundação de Apoio à Pesquisa do Estado do Espírito Santo) with research funding and a doctoral scholarship to the first author (PROCAP 2016 call).

Author information

Authors and Affiliations

Authors

Contributions

LSLP coordinated research, collected, analyzed data, interpreted data and wrote the manuscript. GCA wrote the manuscript and aided with data interpretation. JEMP, JVT provided support, advice, and guidance throughout the experiment. KMPA and GRFC contributed to the revision of the manuscript and also provided insights into different aspects of the work and aided with the statistical analysis. TMTX assisted in laboratory experiments.

Corresponding author

Correspondence to Genilda Canuto Amaral.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Pramod Kumar .

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Lorenzoni-Paschoa, L., Amaral, G.C., Pezzopane, J.E.M. et al. Climate change and the ecophysiology of Bertholletia excelsa seedlings. Plant Growth Regul 98, 155–165 (2022). https://doi.org/10.1007/s10725-022-00841-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00841-w

Keywords

Navigation