Skip to main content

Advertisement

Log in

Harnessing the role of selenium in soil–plant-microbe ecosystem: ecophysiological mechanisms and future prospects

  • Review paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Selenium (Se) is the critical element that is required by various organisms for biological functions. There are numerous beneficial aspects of Se in plants such as reduced cell viability, regulation of membrane structures, chloroplast and plastid membrane stability, activation of membranous enzyme and transport of different solutes and metabolites within cell organelles. Moreover, they have also been observed to enhance photosynthesis, delayed senescence and induced plant yield in plants with decreased oxidative stress. Se uptake by different organisms occur in various inorganic forms namely, selenate, elemental Se, selenite and selenide. These are further converted into organic forms through biological pathways as selenoamino acid, selenomethionine and selenocysteine respectively. The biological processes of living cells convert these amino acids into Se-comprising proteins by replacing methionine with SeMet. SeCys is the crucial component of active sites of enzymes. Therefore, Se-biofortification in plants have been considered as pioneer approach in agriculture. Moreover, microbes undergo reductive transformation of Se that also governs its bioavailability as well as mobility within the environment. Along with its beneficial aspects, it is also considered as contaminant due to its bioaccumulation within the environment. In regard to its contaminating nature, enormous strategies have been developed so far for its treatment as well as bioremediation. Besides, there are plethora of challenges associated such as establishment of stringent discharge concentration, fate within environment along with its long-term stability. The present review mainly focuses on factors linked with Se nature and distribution in ecosystem along with its sources, speciation, toxicity, biogeochemical cycle, bioavailability, resistance and detoxification mechanisms in plants as well as microbes. By this review, we have offered the substantial insights to develop effective regulation methods for Se within the ecosystem. We have also summarised the prospects of Se-biofortification in improving agricultural practices as well as coping deficiencies within the living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

None.

Code availability

None.

References

  • Abera Tuffa Y (2019) Phenotypic, symbiotic and plant growth promoting properties of soybean nodulating rhizobia under greenhouse and field conditions in Ethiopia. Doctoral dissertation, Addis Ababa University

  • Akiho H, Yamamoto T, Tochihara Y, Noda N, Noguchi S, Ito S (2012) Speciation and oxidation reaction analysis of selenium in aqueous solution using X-ray absorption spectroscopy for management of trace element in FGD liquor. Fuel 102:156–161

    Article  CAS  Google Scholar 

  • Alford ÉR, Lindblom SD, Pittarello M, Freeman JL, Fakra SC, Marcus MA, Broeckling C, Pilon-Smits EA, Paschke MW (2014) Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae). Am J Bot 101(11):1895–1905

    Article  PubMed  Google Scholar 

  • Alfthan G, Eurola M, Ekholm P, Venäläinen ER, Root T, Korkalainen K, Hartikainen H, Salminen P, Hietaniemi V, Aspila P, Aro A (2015) Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: from deficiency to optimal selenium status of the population. J Trace Elem Med Biol 31:142–147

    Article  CAS  PubMed  Google Scholar 

  • Alves LR, Rossatto DR, Rossi ML, Martinelli AP, Gratão PL (2020) Selenium improves photosynthesis and induces ultrastructural changes but does not alleviate cadmium-stress damages in tomato plants. Protoplasma 257(2):597–605

    Article  CAS  PubMed  Google Scholar 

  • Aly RA, Abdel-Halim KY (2020) Effect of bio-fertilizer and foliar spray of selenium of growth, yield and quality of potato plants. Acad J Life Sci 6(1):1–7

  • Alyemeni MN, Ahanger MA, Wijaya L, Alam P, Bhardwaj R, Ahmad P (2018) Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma 255(2):459–469

    Article  CAS  PubMed  Google Scholar 

  • Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C, Prasad MN, Wenzel WW, Rinklebe J (2017) Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation—a review. Earth Sci Rev 171:621–645

    Article  CAS  Google Scholar 

  • Ashraf MA, Akbar A, Parveen A, Rasheed R, Hussain I, Iqbal M (2018) Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiol Biochem 123:268–280

    Article  CAS  PubMed  Google Scholar 

  • Bajaj M, Eiche E, Neumann T, Winter J, Gallert C (2011) Hazardous concentrations of selenium in soil and groundwater in North-West India. J Hazard Mater 189(3):640–646

    Article  CAS  PubMed  Google Scholar 

  • Balakhnina TI, Nadezhkina ES (2017) Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russ J Plant Physiol 64(2):215–223

    Article  CAS  Google Scholar 

  • Bañuelos GS, Freeman J, Arroyo I (2020) Accumulation and speciation of selenium in biofortified vegetables grown under high boron and saline field conditions. Food Chem 5:100073

    Google Scholar 

  • Bassil J, Naveau A, Bueno M, Razack M, Kazpard V (2018) Leaching behavior of selenium from the karst infillings of the hydrogeological experimental site of poitiers. Chem Geol 483:141–150

    Article  CAS  Google Scholar 

  • Bodnar M, Konieczka P, Namiesnik J (2012) The properties, functions, and use of selenium compounds in living organisms. J Environ Sci Health Part C 30(3):225–252

    Article  CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao FJ, Breward N, Harriman M (2006) Biofortification of UK food crops with selenium. Proc Nutr Society 65(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Bujdoš M, Muľová A, Kubova J, Medveď J (2005) Selenium fractionation and speciation in rocks, soils, waters and plants in polluted surface mine environment. Environ Geol 47(3):353–360

    Article  Google Scholar 

  • Businelli D, D’Amato R, Onofri A, Tedeschini E, Tei F (2015) Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L. Karst) through fortification in pre-transplanting. Sci Hortic 197:697–704

    Article  CAS  Google Scholar 

  • Cabannes E, Buchner P, Broadley MR, Hawkesford MJ (2011) A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiol 157(4):2227–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darcheville O, Février L, Haichar FZ, Berge O, Martin-Garin A, Renault P (2008) Aqueous, solid and gaseous partitioning of selenium in an oxic sandy soil under different microbiological states. J Environ Radioact 99(6):981–992

    Article  CAS  PubMed  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119(2):565–574

    Article  PubMed Central  Google Scholar 

  • Di Tullo P, Versini A, Bueno M, Le Hécho I, Thiry Y, Biron P, Castrec-Rouelle M, Pannier F (2015) Stable isotope tracing: a powerful tool for selenium speciation and metabolic studies in non-hyperaccumulator plants (ryegrass Lolium perenne L.). Anal Bioanal Chem 407(30):9029–9042

    Article  PubMed  Google Scholar 

  • Dinh QT, Wang M, Tran TAT, Zhou F, Wang D, Zhai H, Peng Q, Xue M, Du Z, Bañuelos GS, Lin ZQ (2019) Bioavailability of selenium in soil-plant system and a regulatory approach. Crit Rev Environ Sci Technol 49(6):443–517

    Article  CAS  Google Scholar 

  • Dowdle PR, Oremland RS (1998) Microbial oxidation of elemental selenium in soil slurries and bacterial cultures. Environ Sci Technol 32(23):3749–3755

    Article  CAS  Google Scholar 

  • Durán P, Acuña JJ, Jorquera MA, Azcón R, Borie F, Cornejo P, Mora ML (2013) Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: a preliminary study as a potential Se biofortification strategy. J Cereal Sci 57(3):275–280

    Article  Google Scholar 

  • Durán P, Acuña JJ, Jorquera MA, Azcón R, Paredes C, Rengel Z, de la Luz MM (2014) Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol Fert Soils 50(6):983–990

    Article  Google Scholar 

  • Dutta M, Kushwaha A, Kalita S, Devi G, Bhuyan M (2019) Assessment of bioaccumulation and detoxification of cadmium in soil-plant-insect food chain. Bioresour Technol Rep 7:100242

    Article  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6(3):273–279

    Article  CAS  PubMed  Google Scholar 

  • El-Bassiony AM, Mahmoud SH, El-Sawy SM, Shedeed SI (2020) Stimulation of growth and productivity of onion plants by selenium and growth active substances. Middle East J Agric Res 9(3):637–645

    Google Scholar 

  • El-Ramady HR, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12(4):495–510

    Article  CAS  Google Scholar 

  • El-Ramady HR, Domokos-Szabolcsy É, Shalaby TA, Prokisch J, Fári M (2015) Selenium in agriculture: water, air, soil, plants, food, animals and nanoselenium. CO2 sequestration, biofuels and depollution. Springer, Cham, pp 153–232

    Chapter  Google Scholar 

  • Estrada AM, Olivares LGG, López EC, Serrano GR (2020) SelA and SelD genes involved in selenium absorption metabolism in lactic acid bacteria isolated from Mexican cheeses. Int Dairy J 103:104629

    Article  Google Scholar 

  • Eswayah AS, Smith TJ, Gardiner PH (2016) Microbial transformations of selenium species of relevance to bioremediation. Appl Environ Microbiol 82(16):4848–4859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etteieb S, Magdouli S, Zolfaghari M, Brar S (2020) Monitoring and analysis of selenium as an emerging contaminant in mining industry: a critical review. Sci Total Environ 698:134339

    Article  CAS  PubMed  Google Scholar 

  • Feng T, Chen SS, Gao DQ, Liu GQ, Bai HX, Li A, Peng LX, Ren ZY (2015) Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). Photosynthetica 53(4):609–612

    Article  CAS  Google Scholar 

  • Feng R, Liao G, Guo J, Wang R, Xu Y, Ding Y, Mo L, Fan Z, Li N (2016) Responses of root growth and antioxidative systems of paddy rice exposed to antimony and selenium. Environ Exp Bot 122:29–38

    Article  CAS  Google Scholar 

  • Feng R, Wang L, Yang J, Zhao P, Zhu Y, Li Y, Yu Y, Liu H, Rensing C, Wu Z, Ni R (2021) Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. J Hazard Mater 402:123570

    Article  CAS  PubMed  Google Scholar 

  • Filek M, Gzyl-Malcher B, Zembala M, Bednarska E, Laggner P, Kriechbaum M (2010) Effect of selenium on characteristics of rape chloroplasts modified by cadmium. J Plant Physiol 167(1):28–33

    Article  CAS  PubMed  Google Scholar 

  • Floor GH, Román-Ross G (2012) Selenium in volcanic environments: a review. Appl Geochem 27(3):517–531

    Article  CAS  Google Scholar 

  • Fordyce FM, Guangdi Z, Green K, Xinping L (2000) Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China. Appl Geochem 15(1):117–132

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2012) Managing the cellular redox hub in photosynthetic organisms. Plant Cell Environ 35(2):199–201

    Article  CAS  PubMed  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EA (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173(3):517–525

    Article  CAS  PubMed  Google Scholar 

  • Garousi F, Veres S, Kovács B (2016) Comparison of selenium toxicity in sunflower and maize seedlings grown in hydroponic cultures. Bullet Environ Contam Toxicol 97(5):709–713

    Article  CAS  Google Scholar 

  • Gigolashvili T, Kopriva S (2014) Transporters in plant sulfur metabolism. Front Plant Sci 5:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Golob A, Kavčič J, Stibilj V, Gaberščik A, Vogel-Mikuš K, Germ M (2017) The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L. Ecotoxicol Environ Saf 136:142–149

    Article  CAS  PubMed  Google Scholar 

  • Golubkina N, Zamana S, Seredin T, Poluboyarinov P, Sokolov S, Baranova H, Krivenkov L, Pietrantonio L, Caruso G (2019) Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plants 8(4):102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami L, Kumar RV, Pakshirajan K, Pugazhenthi G (2019) A novel integrated biodegradation—microfiltration system for sustainable wastewater treatment and energy recovery. J Hazard Mater 365:707–715

    Article  CAS  PubMed  Google Scholar 

  • Goswami L, Pakshirajan K, Pugazhenthi G (2020) Biological treatment of biomass gasification wastewater using hydrocarbonoclastic bacterium Rhodococcus opacus in an up-flow packed bed bioreactor with a novel waste-derived nano-biochar based bio-support material. J Cleaner Prod 256:120253

    Article  CAS  Google Scholar 

  • Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074

    Article  PubMed  PubMed Central  Google Scholar 

  • Handa N, Kohli SK, Sharma A, Thukral AK, Bhardwaj R, Abd Allah EF, Alqarawi AA, Ahmad P (2019) Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environ Exp Bot 161:180–192

    Article  CAS  Google Scholar 

  • Harris J, Schneberg KA, Pilon-Smits EA (2014) Sulfur–selenium–molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta 239(2):479–491

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Al Mahmud J, Nahar K, Fujita M (2020) Selenium in plants: boon or bane? Environ Exp Bot 178:104170

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B, Dresler S, Wójcik M (2014) Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Sci Hortic 172:10–18

    Article  CAS  Google Scholar 

  • He Q, Yao K (2010) Microbial reduction of selenium oxyanions by Anaeromyxobacter dehalogenans. Biores Technol 101(10):3760–3764

    Article  CAS  Google Scholar 

  • He Y, Xiang Y, Zhou Y, Yang Y, Zhang J, Huang H, Shang C, Luo L, Gao J, Tang L (2018) Selenium contamination, consequences and remediation techniques in water and soils: a review. Environ Res 164:288–301

    Article  CAS  PubMed  Google Scholar 

  • He KQ, Yuan CG, Shi MD, Jiang YH (2020) Accelerated screening of arsenic and selenium fractions and bioavailability in fly ash by microwave assistance. Ecotoxicol Environ Saf 187:109820

    Article  CAS  PubMed  Google Scholar 

  • Hemmati M, Delkhosh B, Rad AH, Mohammadi GN (2019) Effect of the application of foliar selenium on canola cultivars as influenced by different irrigation regimes. J Agric Sci 25(3):309–318

    Google Scholar 

  • Herbel MJ, Blum JS, Oremland RS, Borglin SE (2003) Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol J 20(6):587–602

    Article  CAS  Google Scholar 

  • Hernández-Hernández H, Quiterio-Gutiérrez T, Cadenas-Pliego G, Ortega-Ortiz H, Hernández-Fuentes AD, Cabrera de la Fuente M, Valdés-Reyna J, Juárez-Maldonado A (2019) Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants 8(10):355

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain A, Skalicky M, Brestic M, Maitra S, Sarkar S, Ahmad Z, Vemuri H, Garai S, Mondal M, Bhatt R, Kumar P (2021) Selenium biofortification: roles, mechanisms, responses and prospects. Molecules 26(4):881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang A, Huang K, Peng J, Huang S, Bi X, Zhai R, Mo R, Zheng D, Zou C, Wei X, Tan H (2019) Effects of foliar spraying of selenium fertilizer on selenium-enriched content, heavy metal content and yield of sweet corn grain. J Southern Agric 50(1):40–44

    CAS  Google Scholar 

  • Huang H, Li M, Rizwan M, Dai Z, Yuan Y, Hossain MM, Cao M, Xiong S, Tu S (2021) Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. J Hazard Mater 401:123393

    Article  CAS  PubMed  Google Scholar 

  • Hunter WJ, Manter DK (2009) Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr Microbiol 58(5):493–498

    Article  CAS  PubMed  Google Scholar 

  • Huynh T, Harris HH, Zhang H, Noller BN (2015) Measurement of labile arsenic speciation in water and soil using diffusive gradients in thin films (DGT) and X-ray absorption near edge spectroscopy (XANES). Environ Chem 12(2):102–111

    Article  CAS  Google Scholar 

  • Jia H, Song Z, Wu F, Ma M, Li Y, Han D, Yang Y, Zhang S, Cui H (2018) Low selenium increases the auxin concentration and enhances tolerance to low phosphorous stress in tobacco. Environ Exp Bot 153:127–134

    Article  CAS  Google Scholar 

  • Jiang C, Zu C, Shen J, Shao F, Li T (2015) Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana tabacum L.). Acta Soc Bot Pol 84(1):71

    Article  CAS  Google Scholar 

  • Johnsson L (1991) Selenium uptake by plants as a function of soil type, organic matter content and pH. Plant Soil 133(1):57–64

    Article  CAS  Google Scholar 

  • Jordan N, Marmier N, Lomenech C, Giffaut E, Ehrhardt JJ (2009) Competition between selenium (IV) and silicic acid on the hematite surface. Chemosphere 75(1):129–134

    Article  CAS  PubMed  Google Scholar 

  • Jornstedt MB, Kumar S, Holmgren A (1995) Selenite and selenodiglutathione: reactions with thioredoxin systems. Methods Enzymol 252:209–219

    Article  Google Scholar 

  • Jung B, Safan A, Batchelor B, Abdel-Wahab A (2016) Spectroscopic study of Se (IV) removal from water by reductive precipitation using sulfide. Chemosphere 163:351–358

    Article  CAS  PubMed  Google Scholar 

  • Kapoor A, Tanjore S, Viraraghavan T (1995) Removal of selenium from water and wastewater. Int J Environ Stud 49(2):137–147

    Article  CAS  Google Scholar 

  • Kessi J, Hanselmann KW (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279(49):50662–50669

    Article  CAS  PubMed  Google Scholar 

  • Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65(11):4734–4740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalofah A, Migdadi H, El-Harty E (2021) Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa willd) to exogenous selenium application. Plants 10(4):719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoei NS, Lampis S, Zonaro E, Yrjälä K, Bernardi P, Vallini G (2017) Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. New Biotechnol 34:1–11

    Article  CAS  Google Scholar 

  • Kikkert J, Berkelaar E (2013) Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Contam Toxicol 65(3):458–465

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathol 70(11):1078–1082

    Article  Google Scholar 

  • Kushwaha A, Goswami L, Lee J, Sonne C, Brown RJ, Kim KH (2021) Selenium in soil-microbe-plant systems: sources, distribution, toxicity, tolerance, and detoxification. Crit Rev Environ Sci Technol 4:1–38

    Google Scholar 

  • Lampis S, Ferrari A, Cunha-Queda AC, Alvarenga P, Di Gregorio S, Vallini G (2009) Selenite resistant rhizobacteria stimulate SeO3 2–phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds. Environ Sci Pollut Res 16(6):663–670

    Article  CAS  Google Scholar 

  • Lampis S, Zonaro E, Bertolini C, Cecconi D, Monti F, Micaroni M, Turner RJ, Butler CS, Vallini G (2017) Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: novel clues on the route to bacterial biogenesis of selenium nanoparticles. J Hazard Mater 324:3–14

    Article  CAS  PubMed  Google Scholar 

  • Lanza MG, Silva VM, Montanha GS, Lavres J, de Carvalho HW, Dos Reis AR (2021) Assessment of selenium spatial distribution using μ-XFR in cowpea (Vigna unguiculata (L.) Walp.) plants: Integration of physiological and biochemical responses. Ecotoxicol Environ Saf 207:111216

    Article  CAS  PubMed  Google Scholar 

  • Larsen EH, Lobinski R, Burger-Meÿer K, Hansen M, Ruzik R, Mazurowska L, Rasmussen PH, Sloth JJ, Scholten O, Kik C (2006) Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Analyt Bioanalyt Chem 385(6):1098–1108

    Article  CAS  Google Scholar 

  • Lenz M, Lens PN (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407(12):3620–3633

    Article  CAS  PubMed  Google Scholar 

  • Li S, Bañuelos GS, Min J, Shi W (2015) Effect of continuous application of inorganic nitrogen fertilizer on selenium concentration in vegetables grown in the Taihu Lake region of China. Plant Soil 393(1):351–360

    Article  CAS  Google Scholar 

  • Li G, Khan S, Ibrahim M, Sun TR, Tang JF, Cotner JB, Xu YY (2018) Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. J Hazard Mater 348:100–108

    Article  CAS  PubMed  Google Scholar 

  • Lin ZQ, Terry N (2003) Selenium removal by constructed wetlands: quantitative importance of biological volatilization in the treatment of selenium-laden agricultural drainage water. Environ Sci Technol 37(3):606–615

    Article  CAS  PubMed  Google Scholar 

  • Lindblom SD, Valdez-Barillas JR, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits EA (2013) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot 88:33–42

    Article  CAS  Google Scholar 

  • Liu X, Zhao Z, Duan B, Hu C, Zhao X, Guo Z (2015) Effect of applied sulphur on the uptake by wheat of selenium applied as selenite. Plant Soil 386(1):35–45

    Article  CAS  Google Scholar 

  • Liu Y, Tian X, Liu R, Liu S, Zuza AV (2021) Key driving factors of selenium-enriched soil in the low-se geological belt: a case study in red beds of Sichuan basin, China. CATENA 196:104926

    Article  CAS  Google Scholar 

  • Losi ME, Frankenberger WT (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63(8):3079–3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo W, Li J, Ma X, Niu H, Hou S, Wu F (2019) Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat. Plant Soil 438(1):71–83

    Article  CAS  Google Scholar 

  • Macaskie LE, Mikheenko IP, Yong P, Deplanche K, Murray AJ, Paterson-Beedle M, Coker VS, Pearce CI, Pattrick RA, Vaughan D, van der Laan G (2009) Today’s wastes, tomorrow’s materials for environmental protection. Adv Mater Res 71:541–548

    Article  Google Scholar 

  • Macy JM, Lawson S, DeMoll-Decker H (1993) Bioremediation of selenium oxyanions in San Joaquin drainage water using Thauera selenatis in a biological reactor system. Appl Microbiol Biotechnol 40(4):588–594

    Article  CAS  Google Scholar 

  • Madigan MT, Clark DP, Stahl D, Martinko JM (2010) Brock biology of microorganisms, 13th edn. Benjamin Cummings, San Francisco

    Google Scholar 

  • Martin DP, Seiter JM, Lafferty BJ, Bednar AJ (2017) Exploring the ability of cations to facilitate binding between inorganic oxyanions and humic acid. Chemosphere 166:192–196

    Article  CAS  PubMed  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH Jr (1991) Arsenic and selenium chemistry as affected by sediment redox potential and pH. J Environ Qual 20(3):522–527

    Article  CAS  Google Scholar 

  • Mehdi Y, Hornick JL, Istasse L, Dufrasne I (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules 18(3):3292–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesbahi-Nowrouzi M, Mollania N (2018) Purification of selenate reductase from Alcaligenes sp. CKCr-6A with the ability to biosynthesis of selenium nanoparticle: Enzymatic behavior study in imidazolium based ionic liquids and organic solvent. J Mol Liq 249:1254–1262

    Article  CAS  Google Scholar 

  • Monahan-Pendergast M, Przybylek M, Lindblad M, Wilcox J (2008) Theoretical predictions of arsenic and selenium species under atmospheric conditions. Atmos Environ 42(10):2349–2357

    Article  CAS  Google Scholar 

  • Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran LSP (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223

    Article  CAS  PubMed  Google Scholar 

  • Mozafariyan M, Pessarakli M, Saghafi K (2017) Effects of selenium on some morphological and physiological traits of tomato plants grown under hydroponic condition. J Plant Nutr 40(2):139–144

    Article  CAS  Google Scholar 

  • Mroczek-Zdyrska M, Wójcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147(1):320–328

    Article  CAS  PubMed  Google Scholar 

  • Mroczek-Zdyrska M, Strubińska J, Hanaka A (2017) Selenium improves physiological parameters and alleviates oxidative stress in shoots of lead-exposed Vicia faba L. minor plants grown under phosphorus-deficient conditions. J Plant Growth Regul 36(1):186–199

    Article  CAS  Google Scholar 

  • Munier-Lamy C, Deneux-Mustin S, Mustin C, Merlet D, Berthelin J, Leyval C (2007) Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass. J Environ Radioact 97(2–3):148–158

    Article  CAS  PubMed  Google Scholar 

  • Nakamaru YM, Altansuvd J (2014) Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review. Chemosphere 111:366–371

    Article  CAS  PubMed  Google Scholar 

  • Nancharaiah YV, Lens PN (2015) Selenium biomineralization for biotechnological applications. Trends Biotechnol 33(6):323–330

    Article  CAS  PubMed  Google Scholar 

  • Naseem M, Anwar-ul-Haq M, Wang X, Farooq N, Awais M, Sattar H, Ahmed Malik H, Mustafa A, Ahmad J, El-Esawi MA (2021) Influence of selenium on growth, physiology, and antioxidant responses in maize varies in a dose-dependent manner. J Food Qual. https://doi.org/10.1155/2021/6642018

    Article  Google Scholar 

  • Ohta Y, Suzuki KT (2008) Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium. Toxicol Appl Pharmacol 226(2):169–177

    Article  CAS  PubMed  Google Scholar 

  • Olegario JT, Yee N, Miller M, Sczepaniak J, Manning B (2010) Reduction of Se (VI) to Se (-II) by zerovalent iron nanoparticle suspensions. J Nanopart Res 12(6):2057–2068

    Article  CAS  Google Scholar 

  • Oremland RS, Blum JS, Culbertson CW, Visscher PT, Miller LG, Dowdle P, Strohmaier FE (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60(8):3011–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Painter EP (1941) The chemistry and toxicity of selenium compounds, with special reference to the selenium problem. Chem Rev 28(2):179–213

    Article  CAS  Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mater 287:384–391

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011) Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J Hazard Mater 185(2–3):549–574

    Article  CAS  PubMed  Google Scholar 

  • Patel PJ, Trivedi GR, Shah RK, Saraf M (2018) Selenorhizobacteria: as biofortification tool in sustainable agriculture. Biocatal Agric Biotechnol 14:198–203

    Article  Google Scholar 

  • Patharajan S, Raaman N (2012) Influence of arbuscular mycorrhizal fungi on growth and selenium uptake by garlic plants. Arch Phytopathol Plant Protect 45(2):138–151

    Article  CAS  Google Scholar 

  • Pearce CI, Coker VS, Charnock JM, Pattrick RA, Mosselmans JFW, Law N, Beveridge TJ, Lloyd JR (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnol 19(15):155603

    Article  Google Scholar 

  • Peng Q, Wang M, Cui Z, Huang J, Chen C, Guo L, Liang D (2017) Assessment of bioavailability of selenium in different plant-soil systems by diffusive gradients in thin-films (DGT). Environ Pollut 225:637–643

    Article  CAS  PubMed  Google Scholar 

  • Peng Q, Wang D, Wang M, Zhou F, Yang W, Liu Y, Liang D (2020) Prediction of selenium uptake by pak choi in several agricultural soils based on diffusive gradients in thin-films technique and single extraction. Environ Pollut 256:113414

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EA, Quinn CF (2010) Selenium metabolism in plants. Cell biology of metals and nutrients. Springer, Berlin, pp 225–241

    Chapter  Google Scholar 

  • Prins CN, Hantzis LJ, Quinn CF, Pilon-Smits EA (2011) Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata. J Exp Bot 62(15):5633–5640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyrzyńska K (2002) Determination of selenium species in environmental samples. Microchim Acta 140(1–2):55–62

    Article  Google Scholar 

  • Qin HB, Zhu JM, Lin ZQ, Xu WP, Tan DC, Zheng LR, Takahashi Y (2017) Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy. Environ Pollut 225:361–369

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra MP, Nayaka SC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59

    Chapter  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Reich HJ, Hondal RJ (2016) Why nature chose selenium. ACS Chem Biol 11(4):821–841

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld I, Beath OA (2013) Selenium: geobotany, biochemistry, toxicity, and nutrition. Academic Press, Cambridge

    Google Scholar 

  • Rosenfeld CE, Sabuda MC, Hinkle MA, James BR, Santelli CM (2020) A fungal-mediated cryptic selenium cycle linked to manganese biogeochemistry. Environ Sci Technol 54(6):3570–3580

    Article  CAS  PubMed  Google Scholar 

  • Saeedi M, Soltani F, Babalar M, Izadpanah F, Wiesner-Reinhold M, Baldermann S (2021) Selenium fortification alters the growth, antioxidant characteristics and secondary metabolite profiles of cauliflower (Brassica oleracea var. botrytis) cultivars in hydroponic culture. Plants 10(8):1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol 171(5):85–91

    Article  CAS  PubMed  Google Scholar 

  • Saleem MF, Kamal MA, Anjum SA, Shahid M, Raza MA, Awais M (2018) Improving the performance of Bt-cotton under heat stress by foliar application of selenium. J Plant Nutr 41(13):1711–1723

    Article  CAS  Google Scholar 

  • Sanmartín P, DeAraujo A, Vasanthakumar A (2018) Melding the old with the new: trends in methods used to identify, monitor, and control microorganisms on cultural heritage materials. Microbial Ecol 76(1):64–80

    Article  Google Scholar 

  • Santhosh C, Daneshvar E, Tripathi KM, Baltrėnas P, Kim T, Baltrėnaitė E, Bhatnagar A (2020) Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr (VI) and Acid orange 7 dye from aqueous solution. Environ Sci Pollut Res 27(26):32874–32887

    Article  CAS  Google Scholar 

  • Sathe SS, Goswami L, Mahanta C, Devi LM (2020) Integrated factors controlling arsenic mobilization in an alluvial floodplain. Environ Technol Innov 17:100525

    Article  CAS  Google Scholar 

  • Schilling K, Basu A, Wanner C, Sanford RA, Pallud C, Johnson TM, Mason PR (2020) Mass-dependent selenium isotopic fractionation during microbial reduction of seleno-oxyanions by phylogenetically diverse bacteria. Geochim Cosmochim Acta 276:274–288

    Article  CAS  Google Scholar 

  • Schomburg L (2017) Dietary selenium and human health. Nutrients 9(1):22

    Article  Google Scholar 

  • Schröder I, Rech S, Krafft T, Macy JM (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272(38):23765–23768

    Article  PubMed  Google Scholar 

  • Selim S, Akhtar N, El Azab E, Warrad M, Alhassan HH, Abdel-Mawgoud M, Al Jaouni SK, Abdelgawad H (2022) Innovating the synergistic assets of β-amino butyric acid (BABA) and selenium nanoparticles (SeNPs) in improving the growth, nitrogen metabolism, biological activities, and nutritive value of Medicago interexta sprouts. Plants 11(3):306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaheen SM, Kwon EE, Biswas JK, Tack FM, Ok YS, Rinklebe J (2017) Arsenic, chromium, molybdenum, and selenium: geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. Chemosphere 180:553–563

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934

    Article  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Goyal R, Sadana US (2014) Selenium accumulation and antioxidant status of rice plants grown on seleniferous soil from Northwestern India. Rice Sci 21(6):327–334

    Article  Google Scholar 

  • Sharma VK, McDonald TJ, Sohn M, Anquandah GA, Pettine M, Zboril R (2015) Biogeochemistry of selenium. A review. Environ Chem Lett 13(1):49–58

    Article  CAS  Google Scholar 

  • Shrift A (1964) A selenium cycle in nature? Nature 201(4926):1304–1305

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Kushwaha A, Hans N, Gautam A, Rani R (2019) Evaluation of the cytotoxicity and interaction of lead with lead resistant bacterium Acinetobacter junii Pb1. Braz J Microbiol 50(1):223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skrypnik L, Styran T, Savina T, Golubkina N (2021) Effect of selenium application and growth stage at harvest on hydrophilic and lipophilic antioxidants in lamb’s lettuce (Valerianella locusta L. Laterr.). Plants 10(12):2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song T, Cui G, Su X, He J, Tong S, Liu Y (2020) The origin of soil selenium in a typical agricultural area in Hamatong River Basin, Sanjiang Plain. China Catena 185:104355

    Article  CAS  Google Scholar 

  • Srivastava S, Pathak AD, Gupta PS, Shrivastava AK, Srivastava AK (2012) Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J Environ Biol 33(3):657

    CAS  PubMed  Google Scholar 

  • Stadtman TC (1990) Selenium biochemistry. Ann Rev Biochem 59(1):111–127

    Article  CAS  PubMed  Google Scholar 

  • Staicu LC, Barton LL (2017) Bacterial metabolism of selenium—for survival or profit. Bioremediation of selenium contaminated wastewater. Springer, Cham, pp 1–31

    Google Scholar 

  • Staicu LC, Ackerson CJ, Cornelis P, Ye L, Berendsen RL, Hunter WJ, Noblitt SD, Henry CS, Cappa JJ, Montenieri RL, Wong AO (2015) Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions. J Appl Microbiol 119(2):400–410

    Article  CAS  PubMed  Google Scholar 

  • Stillings LL (2017) Selenium, chapter Q of Schulz. In: DeYoung KJ, Seal JHRR, Bradley DC (eds) Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. U.S. Geological Survey Professional Paper, p 1802

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  • Stüeken EE (2017) Selenium isotopes as a biogeochemical proxy in deep time. Rev Miner Geochem 82(1):657–682

    Article  Google Scholar 

  • Stüeken EE, Foriel J, Nelson BK, Buick R, Catling DC (2013) Selenium isotope analysis of organic-rich shales: advances in sample preparation and isobaric interference correction. J Anal at Spect 28(11):1734–1749

    Article  Google Scholar 

  • Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ (2014) Arsenic and selenium toxicity and their interactive effects in humans. Environ Int 69:148–158

    Article  CAS  PubMed  Google Scholar 

  • Sura-de Jong M, Reynolds RJ, Richterova K, Musilova L, Staicu LC, Chocholata I, Cappa JJ, Taghavi S, van der Lelie D, Frantik T, Dolinova I (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front Plant Sci 6:p113

    Article  Google Scholar 

  • Tan Y, Wang Y, Wang Y, Xu D, Huang Y, Wang D, Wang G, Rensing C, Zheng S (2018) Novel mechanisms of selenate and selenite reduction in the obligate aerobic bacterium Comamonas testosteroni S44. J Hazard Mater 359:129–138

    Article  CAS  PubMed  Google Scholar 

  • Tavakoli S, Enteshari S, Yousefifard M (2020) Investigation of the effect of selenium on growth, antioxidant capacity and secondary metabolites in Melissa officinalis. Iran J Plant Physiol 10(2):3125–3134

    Google Scholar 

  • Theisen J, Yee N (2014) The molecular basis for selenate reduction in Citrobacter freundii. Geomicrobiol J 31(10):875–883

    Article  CAS  Google Scholar 

  • Thiry C, Ruttens A, De Temmerman L, Schneider YJ, Pussemier L (2012) Current knowledge in species-related bioavailability of selenium in food. Food Chem 130(4):767–784

    Article  CAS  Google Scholar 

  • Tolu J, Thiry Y, Bueno M, Jolivet C, Potin-Gautier M, Le Hécho I (2014) Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Sci Total Environ 479:93–101

    Article  PubMed  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG (1992) Reduction of selenate and selenite to elemental selenium by Wolinella succinogenes. Can J Microbiol 38(12):1328–1333

    Article  CAS  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Indus Microbiol 14(3):329–336

    Article  CAS  Google Scholar 

  • Tripathi KM, Ahn HT, Chung M, Le XA, Saini D, Bhati A, Sonkar SK, Kim MI, Kim T (2020) N, S, and P-Co-doped carbon quantum dots: Intrinsic peroxidase activity in a wide pH range and its antibacterial applications. ACS Biomater Sci Eng 6(10):5527–5537

    Article  CAS  PubMed  Google Scholar 

  • Trivedi G, Patel P, Saraf M (2020) Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. S Afr J Bot 134:27–35

    Article  CAS  Google Scholar 

  • ul Abadin Z, Yasin M, Faisal M (2017) Bacterial-mediated selenium biofortification of Triticum aestivum: Strategy for improvement in selenium phytoremediation and biofortification. Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 299–315

    Chapter  Google Scholar 

  • Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Annals Bot 112(6):965–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vriens B, Behra R, Voegelin A, Zupanic A, Winkel LH (2016) Selenium uptake and methylation by the microalga Chlamydomonas reinhardtii. Environ Sci Technol 50(2):711–720

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu G, Zhou J, Wang J, Jin R, Lv H (2011) Quinone-mediated reduction of selenite and tellurite by Escherichia coli. Biores Technol 102(3):3268–3271

    Article  CAS  Google Scholar 

  • Wang S, Liang D, Wang D, Wei W, Fu D, Lin Z (2012) Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China. Sci Total Environ 427:159–164

    Article  PubMed  Google Scholar 

  • Wang J, Li H, Li Y, Yu J, Yang L, Feng F, Chen Z (2013) Speciation, distribution, and bioavailability of soil selenium in the Tibetan Plateau Kashin-Beck disease area—a case study in Songpan County, Sichuan Province, China. Biol Trace Elem Res 156(1):367–375

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wang H, Liu Q, Tian X, Shi Y, Zhang X (2017) QTL mapping of selenium content using a RIL population in wheat. PLoS ONE 12(9):e0184351

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Dinh QT, Thu TTA, Zhou F, Yang W, Wang M, Song W, Liang D (2018) Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil. Chemosphere 199:417–426

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Cui Z, Xue M, Peng Q, Zhou F, Wang D, Dinh QT, Liu Y, Liang D (2019) Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions. Sci Total Environ 689:1–9

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Peng Q, Yang WX, Dinh QT, Tran TAT, Zhao XD, Wu JT, Liu YX, Liang DL (2020) DOM derivations determine the distribution and bioavailability of DOM-Se in selenate applied soil and mechanisms. Environ Pollut 259:113899

    Article  CAS  PubMed  Google Scholar 

  • Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41(34):7151–7165

    Article  CAS  Google Scholar 

  • White PJ (2016) Selenium accumulation by plants. Ann Bot 117(2):217–235

    CAS  PubMed  Google Scholar 

  • White PJ (2017) The genetics of selenium accumulation by plants. Selenium in plants. Springer, Cham, pp 143–163

    Chapter  Google Scholar 

  • Wu Z, Yin X, Bañuelos GS, Lin ZQ, Liu Y, Li M, Yuan L (2016) Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). Front Plant Sci 7:1875

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao K, Lu L, Tang J, Chen H, Li D, Liu Y (2020) Parent material modulates land use effects on soil selenium bioavailability in a selenium-enriched region of southwest China. Geoderma 376:114554

    Article  CAS  Google Scholar 

  • Yadav APS, Dwivedi V, Kumar S, Kushwaha A, Goswami L, Reddy BS (2021) Cyanobacterial extracellular polymeric substances for heavy metal removal: a mini review. J Compos Sci 5(1):1

    Article  Google Scholar 

  • Yasin M, Faisal M (2017) Bacterial-mediated selenium biofortification of Triticum aestivum: Strategy for improvement in selenium phytoremediation and biofortification. Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 299–315

    Google Scholar 

  • Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EA, Faisal M (2015) Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.)-applications in phytoremediation and biofortification. Int J Phytorem 17(4):341–347

    Article  CAS  Google Scholar 

  • Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C (2020) Selenium biofortification of crop food by beneficial microorganisms. J Fungi 6(2):59

    Article  CAS  Google Scholar 

  • Yu Y, Zhang S, Wen B, Huang H, Luo L (2011) Accumulation and speciation of selenium in plants as affected by arbuscular mycorrhizal fungus Glomus mosseae. Biol Trace Elem Res 143(3):1789–1798

    Article  CAS  PubMed  Google Scholar 

  • Zahedi SM, Hosseini MS, Meybodi ND, da Silva JA (2019) Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. S Afr J Bot 124:350–358

    Article  CAS  Google Scholar 

  • Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro-and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329(1):457–468

    Article  CAS  Google Scholar 

  • Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014) OsPT 2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201(4):1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhang C, Du B, Cui H, Fan X, Zhou D, Zhou J (2021) Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: comparison of soft vs. durum wheat varieties. J Hazard Mater 402:123546

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

KK, PK performed conceptualization, analysis and interpretation, writing original draft, and designing the figures. PO provided the critical feedback and shaped the manuscript. RB critically revised the manuscript.

Corresponding authors

Correspondence to Kanika Khanna or Renu Bhardwaj.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Tariq Aftab.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanna, K., Kumar, P., Ohri, P. et al. Harnessing the role of selenium in soil–plant-microbe ecosystem: ecophysiological mechanisms and future prospects. Plant Growth Regul 100, 197–217 (2023). https://doi.org/10.1007/s10725-022-00830-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00830-z

Keywords

Navigation