Skip to main content
Log in

Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica)

  • Brief Communication
  • Published:
Photosynthetica

Abstract

The effects of selenium on photosynthesis and Chl fluorescence in pear, grape, and peach were analyzed. The foliar spray of amino acid-chelated selenium solution was performed soon after fruit setting, totally six times, with an interval of ten days. After seven days from the last spray, the leaves in the middle of shoots were examined. Foliar spray of selenium increased the net photosynthetic rate in pear, grape, and peach. In contrast, the treatment decreased stomatal conductance, transpiration rate, and substomatal CO2 concentration in all the three species. The selenium treatment improved the maximum quantum yield of PSII, effective quantum yield of PSII, and photochemical quenching in all three species. Conversely, the selenium treatment reduced nonphotochemical quenching in all three species. We suggested that selenium can improve photosynthesis and protect PSII in fruit crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

C i :

intercellular CO2 concentration

E :

transpiration rate

Fv/Fm :

maximal quantum yield of PSII photochemistry

g s :

stomatal conductance

NPQ:

nonphotochemical quenching

P N :

net photosynthetic rate

qP :

photochemical quenching coefficient

ΦPSII :

effective quantum yield of PSII photochemistry

References

  • Akbulut M., Cakir S.: The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. — Plant Physiol. Bioch. 48: 160–166, 2010.

    Article  CAS  Google Scholar 

  • Breznik B., Germ M., Gaberščik A., Kreft I.: Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat. — Photosynthetica 43: 583–589, 2005.

    Article  CAS  Google Scholar 

  • Chen T.F., Zheng W.J., Wong Y.S., Yang F.: Selenium-induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in Spirulina platensis. — J. Integr. Plant Biol. 50: 40–48, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M., Prasad P.V., Seppanen M.: Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. — Plant Physiol. Bioch. 48: 999–1007, 2010.

    Article  CAS  Google Scholar 

  • Ekelund N.G.A., Danilov R.A.: The influence of selenium on photosynthesis and “light-enhanced dark respiration” (LEDR) in the flagellate Euglena gracilis after exposure to ultraviolet radiation. — Aquat. Sci. 63: 457–465, 2001.

    Article  CAS  Google Scholar 

  • Feng R.W., Wei C.Y.: Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant. — Plant Soil Environ. 58: 105–110, 2012.

    CAS  Google Scholar 

  • Filek M., Kościelniak J., Łabanowska M. et al.: Seleniuminduced protection of photosynthesis activity in rape (Brassica napus) seedlings subjected to cadmium stress. Fluorescence and EPR measurements. — Photosynth. Res. 105: 27–37, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Germ M., Kreft I., Gaberščik A.: UV-B radiation and selenium affected energy availability in green alga Zygnema. — Biologia 64: 676–679, 2009.

    Article  CAS  Google Scholar 

  • Germ M., Kreft I., Stibilj V., Urbanc-Berčič O.: Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. — Plant Physiol. Bioch. 45: 162–167, 2007.

    Article  CAS  Google Scholar 

  • Hugouvieux V., Dutilleul C., Jourdain A. et al: Arabidopsis putative selenium-binding protein1 expression is tightly linked to cellular sulfur demand and can reduce sensitivity to stresses requiring glutathione for tolerance. — Plant Physiol. 151: 768–781, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hung C. Y., Holliday B. M., Kaur H. et al.: Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus racemosus. — Mol. Biol. Rep. 39: 7635–7646, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Kong L.G., Wang M., Bi D.L.: Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. — Plant Growth Regul. 45: 155–163, 2005.

    Article  CAS  Google Scholar 

  • Kreft I., Mechora Š., Germ M., Stibilj V.: Impact of selenium on mitochondrial activity in young Tartary buckwheat plants. — Plant Physiol. Bioch. 63: 196–199, 2013.

    Article  CAS  Google Scholar 

  • Owusu-Sekyere A., Kontturi J., Hajiboland R. et al.: Influence of selenium (Se) on carbohydrate metabolism, nodulation and growth in alfalfa (Medicago sativa L.). — Plant Soil 373: 541–552, 2013.

    Article  CAS  Google Scholar 

  • Pacheco P., Hanley T., Figueroa J.A.L.: Identification of proteins involved in Hg-Se antagonism in water hyacinth (Eichhornia crassipes). — Metallomics 6: 560–571, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Poggi V., Del Vescovo V., Di Sanza C. et al.: Selenite transiently represses transcription of photosynthesis-related genes in potato leaves. — Photosynth. Res. 95: 63–71, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Sultana N., Ikeda T., Kashem M.A.: Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. — Environ. Exp. Bot. 46: 129–140, 2001.

    Article  CAS  Google Scholar 

  • Szczepaniak K., Worch R., Grzyb J.: Ferredoxin:NADP(+) oxidoreductase in junction with CdSe/ZnS quantum dots: characteristics of an enzymatically active nanohybrid. — J. Phys. Condens. Matter. 25: 194102, 2013.

    Article  PubMed  Google Scholar 

  • Vítová M., Bišová K., Hlavová M. et al.: Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. — Aquat. Toxicol. 102: 87–94, 2011.

    Article  PubMed  Google Scholar 

  • Wang Y.-D., Wang X., Wong, Y.-S.: Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. — J. Proteomics 75: 1849–1866, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Xue T. L., Hartikainen H., Piironen V.: Antioxidative and growth-promoting effect of selenium on senescing lettuce. — Plant Soil 237: 55–61, 2001.

    Article  CAS  Google Scholar 

  • Zhang M., Tang S., Huang X. et al.: Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). — Environ. Exp. Bot. 107: 39–45, 2014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Feng.

Additional information

Acknowledgements: This study was financially supported by Tianjin Research Program of Application Foundation and Advanced Technology (14JCYBJC30100), by Tianjin City College Science & Technology Fund Planning Project (20130617), by Technology Innovation Fund Project of Tianjin Municipal Science and Technology Oriented Medium and Small Scale Enterprises (14ZXCXNC00063), by Tianjin City University Funding Scheme for Outstanding Young Teachers, by Tianjin 2014 annual ‘131’ Innovative Talent Training Program Fund, and by Tianjin University Discipline Army Personnel Development Program [Tianjin Commission People Development (2013) No. 12], by 2014 China National University Students’ Innovation and Entrepreneurship Training Program Project (201410061007). We thank Wang Haibo, professor at Research Institute of Pomology, the Chinese Academy of Agricultural Sciences, for kindly gifting the selenium reagent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Chen, S.S., Gao, D.Q. et al. Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). Photosynthetica 53, 609–612 (2015). https://doi.org/10.1007/s11099-015-0118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0118-1

Additional key words

Navigation