Skip to main content
Log in

Genome-wide identification, characterization, and expression analyses of the HAK/KUP/KT potassium transporter gene family reveals their involvement in K+ deficient and abiotic stress responses in pear rootstock seedlings

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

High-affinity K+ (HAK)/K+ uptake (KUP)/K+ transporters (KT) play crucial roles in the regulation of cellular K+ levels. However, little is known about these genes in the Rosaceae family. In this study, 56 putative HAK/KUP/KT genes were identified in genome sequences from Pyrus bretschneideri, Fragaria vesca, and Vitis vinifera, 21 of which were from P. bretschneideri (designated PbHAK1-21). HAK/KUP/KTs from these species, as well as from Arabidopsis and rice, were grouped into five major clusters with eight subclades. Whole-genome duplication/segmental duplication and dispersed duplication largely accounts for the expansion of HAK/KUP/KT families in these five species. Orthologous relationships between pear and Arabidopsis genes suggest that some PbHAKs function as high-affinity K+ transporters or mediators of abiotic stress responses. Cis-regulatory motifs upstream of PbHAK genes also suggest that members of this family respond to environment changes. PbHAK2 and PbHAK12 mRNAs are abundant in roots exposed to normal levels of K+ and are rapidly up-regulated under conditions of K+ deficiency, suggesting that they have crucial roles in K+ uptake, especially at low K+ concentrations. PbHAK12 (orthologous to AtHAK5 from Arabidopsis) is predominately localized in the plasma membrane, consistent with a role in mediating K+ uptake. Some PbHAK mRNA levels also change in response to abiotic stresses such as salt, cold, and drought. Our data reveals potential candidate genes for further functional characterization, and may be useful for breeding pear rootstocks that utilize potassium more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Airoldi CA, Davies B (2012) Gene duplication and the evolution of plant MADS-box transcription factors. J Genet Genom 39:157–165

    Article  CAS  Google Scholar 

  • Altunoglu YC, Baloglu P, Yer EN, Pekol S, Baloglu MC (2016) Identification and expression analysis of LEA, gene family members in cucumber genome. Plant Growth Regul 80:225–241

    Article  Google Scholar 

  • Al-Younis I, Wong A, Gehring C (2015) The Arabidopsis thaliana K+ uptake permease 7 (AtKUP7) contains a functional cytosolic adenylate cyclase catalytic centre. FEBS Lett 589:3848–3852

    Article  CAS  PubMed  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    Article  CAS  PubMed  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bañuelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang YH, Li H, Cong Y, Lin J, Sheng BL (2012) Characterization and expression of a phytochelatin synthase gene in birch-leaf pear (Pyrus betulaefolia Bunge). Plant Mol Biol Rep 30:1329–1337

    Article  CAS  Google Scholar 

  • Chanroj S, Wang G, Venema K, Zhang MW, Delwiche CF, Sze H (2012) Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants. Front Plant Sci 3:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Hu Q, Luo L, Yang T, Zhang S, Hu Y, Yu L, Xu G (2015) Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ 38:2747–2765

    Article  CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2010) Plant-mploc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5:e11335

    Article  PubMed  PubMed Central  Google Scholar 

  • Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry AA, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511–2532

    Article  PubMed  Google Scholar 

  • Davies C, Shin R, Liu W, Thomas MR, Schachtman DP (2006) Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. J Exp Bot 57:3209–3216

    Article  CAS  PubMed  Google Scholar 

  • Elumalai RP, Nagpal P, Reed JW (2002) A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14:119–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein W, Kim BS (1971) Potassium transport loci in Escherichia coli K-12. J Bacteriol 108:639–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu HH, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10:63–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gierth M, Mäser P (2007) Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356

    Article  CAS  PubMed  Google Scholar 

  • Gierth M, Mäser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Porras JL, Benito B, Riaño-Pachón DM, Haro R, Sklodowski K, Rodrígueznavarro A, Ingo Dreyer I (2012) Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. Front Plant Sci 3:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family—multiple functions. Ann Bot London 99:1035–1041

    Article  CAS  Google Scholar 

  • Greiner T, Ramos J, Alvarez MC, Gurnon JR, Kang M, Van Etten JL, Moroni A, Thiel G (2011) Functional HAK/KUP/KT-like potassium transporter encoded by chlorella viruses. Plant J 68:977–986

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong L, Lian X, Zhang Q (2008) KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genom 280:437–452

    Article  CAS  Google Scholar 

  • Han Y, Yin S, Huang L (2015) Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regul 76:13–23

    Article  CAS  Google Scholar 

  • Han M, Wu W, Wu WH, Wang Y (2016) Potassium transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions. Mol Plant 9:437–446

    Article  CAS  PubMed  Google Scholar 

  • He C, Cui K, Duan A, Zeng Y, Zhang J (2012) Genome-wide and molecular evolution analysis of the poplar KT/HAK/KUP potassium transporter gene family. Ecol Evol 2:1996–2004

    Article  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res 26:358–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:357–359

    Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Hyun TK, Rim Y, Kim E, Kim JS (2014) Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato (Solanum lycopersicum L.). Genes Genom 36:365–374

    Article  CAS  Google Scholar 

  • Jack DL, Paulsen IT, Saier MH (2000) The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146:1797–1814

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi D, Uozumi N, Hisamatsu SI, Yamagami M (2010) AtKUP/HAK/KT9, a K+ transporter from Arabidopsis thaliana, mediates Cs+ uptake in Escherichia coli. Biosci Biotechnol Biochem 74:203–205

    Article  CAS  PubMed  Google Scholar 

  • Li W, Xu G, Abdel A, Ling Y (2017) Plant HAK/KUP/KT K+ transporters: function and regulation. Semin Cell Dev Biol

  • Livak KJ, Schmittgen TD (2012) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    Article  Google Scholar 

  • Maher C, Stein L, Ware D (2006) Evolution of Arabidopsis microRNA families through duplication events. Genome Res 16:510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mäser P, Gierth M, Schroeder JI (2002) Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43–54

    Article  Google Scholar 

  • Nieves-Cordones M, Ródenas R, Chavanieu A, Rivero RM, Martinez V, Gaillard I, Rubio F (2016) Uneven HAK/KUP/KT protein diversity among Angiosperms: species distribution and perspectives. Front Plant Sci 7:127

    PubMed  PubMed Central  Google Scholar 

  • Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H et al (2013) Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25:609–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Z, Hampton CR, Shin R, Barkla BJ, White PJ, Schachtman DP (2008) The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J Exp Bot 59:595–607

    Article  CAS  PubMed  Google Scholar 

  • Qiao X, Li M, Li L, Yin H, Wu J, Zhang S (2015) Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biol 15:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehman HM, Nawaz MA, Shah ZH, Daur I, Khatoon S, Yang SH et al (2017) In-depth genomic and transcriptomic analysis of five K+ transporter gene families in soybean confirm their differential expression for nodulation. Front Plant Sci 8:804

    Article  PubMed  PubMed Central  Google Scholar 

  • Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann KA, Grabov A et al (2001) TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell 13:139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogiers SY, Coetzee ZA, Walker RR, Deloire A, Tyerman SD (2017) Potassium in the grape (Vitis vinifera L.) berry: transport and function. Front Plant Sci 88:1629

    Article  Google Scholar 

  • Rubio F, Santa-María GE, Rodríguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34–43

    Article  CAS  Google Scholar 

  • Santa-María GE, Rubio F, Dubcovsky J, RodrÃguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    Article  PubMed  PubMed Central  Google Scholar 

  • Senn ME, Rubio F, Bañuelos MA, Rodríguez-Navarro A (2001) Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem 276:44563–44569

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Shen L, Shen Z, Jing W, Ge H, Zhao J, Zhang W (2016) The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ 38:2766–2779

    Article  Google Scholar 

  • Shen C, Wang J, Jin X, Liu N, Fan X, Dong C, Shen Q, Xu Y (2017) Potassium enhances the sugar assimilation in leaves and fruit by regulating the expression of key genes involved in sugar metabolism of Asian pears. Plant Growth Regul 1:1–14

    CAS  Google Scholar 

  • Song Z, Guo S, Zhang C, Zhang B, Ma R, Korir NK, Yu M (2015a) KT/HAK/KUP potassium transporter genes differentially expressed during fruit development, ripening, and postharvest shelf-life of ‘Xiahui6’ peaches. Acta Physiol Plant 37:131

    Article  Google Scholar 

  • Song ZZ, Yang Y, Ma RJ, Xu JL, Yu ML (2015b) Transcription of potassium transporter genes of KT/HAK/KUP family in peach seedlings and responses to abiotic stresses. Biol Plant 59:65–73

    Article  CAS  Google Scholar 

  • Thiel T, Graner A, Waugh R, Grosse I, Close TJ, Stein N (2009) Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evol Biol 9:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603

    Article  PubMed  Google Scholar 

  • Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J 40:523–535

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X et al (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Guan C, Wang P, Lv ML, Ma Q, Wu GQ et al (2015) Athkt1;1 and athak5 mediate low-affinity Na+ uptake in Arabidopsis thaliana under mild salt stress. Plant Growth Regul 75:615–623

    Article  CAS  Google Scholar 

  • Wang Y, Liu H, Wang S, Li H (2017) Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L.). Plant Growth Regul 81:265–275

    Article  CAS  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Hui L, Li X, Jing L, Wang Z, Yang Q, Chang Y (2015) Systematic selection and validation of appropriate reference genes for gene expression studies by quantitative real-time PCR in pear. Acta Physiol Plant 37:40

    Article  Google Scholar 

  • Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G et al (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166:945–959

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang J, Chen Y, Li R, Wang H, Wei J (2012) Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Mol Biol Rep 39:8465–8473

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Qi K, Liu X, Yin H, Wang P, Chen J, Wu J, Zhang S (2016) Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species. Mol Genet Genom 291:1727–1742

    Article  CAS  Google Scholar 

  • Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture: status and perspectives. J Plant Physiol 171:656–669

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an award from the China Agriculture Research System (CARS-28-10).

Author information

Authors and Affiliations

Authors

Contributions

YX, CD and QS conceived and designed the experiments; YL, LP and CX performed the experiments; YL and XS analysed the data; YL contributed reagents/materials/analysis tools; YL wrote the paper.

Corresponding author

Correspondence to Caixia Dong.

Ethics declarations

Conflict of interest

None of the authors have conflict of interest. All authors read and approved the final manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Phylogenetic tree showing HAK/KUP/KTs from Arabidopsis thaliana, Oryza sativa, and Pyrus bretschneideri. The tree was generated with Clustal X2.0 using the NJ method with MEGA6.0. Supplementary material 1 (TIF 1263 KB)

Fig. S2

Phylogenetic tree and PbHAK gene structures. The phylogenetic tree on the left side was generated by MEGA 6.0 using the NJ method with 1000 bootstrap replicates. The percentage bootstrap scores are indicated on the nodes. The exon and intron organization for each PbHAK gene was obtained from the Gene Structure Display Server (http://gsds.cbi.pku.edu.cn/). Exons and introns are represented by pink boxes and black lines, and untranslated regions (UTRs) are indicated by blue boxes. Supplementary material 2 (TIF 698 KB)

Fig. S3

Distribution of conserved motifs within PbHAKs. The phylogenetic tree on the left side was generated by MEGA 6.0 using the NJ method with 1000 bootstrap replicates. Motifs are represented by colored boxes. Motifs were detected using MEME (http://meme-suite.org/tools/meme) with the following parameters: 5 ≤ optimum motif width ≤ 200; the number of motifs = 15; zero or one occurrence per sequence. Supplementary material 3 (TIF 658 KB)

Fig. S4

Chromosomal localization of PbHAK genes. Each bar represents a chromosome, and chromosome numbers are shown at the top of each chromosome. Tandem duplications are shown using red text. The black lines connect segmentally duplicated gene pairs, and the segmental duplication regions were estimated using the Plant Genome Duplication Database (PGDD). Additionally, one pair of segmentally duplicated genes (PbHAK4/PbHAK5) was located on Chr 07 and the other pair (PbHAK10/PbHAK11) was located on Chr 11. Supplementary material 4 (TIF 1187 KB)

Supplementary material 5 (XLSX 100 KB)

Supplementary material 6 (XLSX 10 KB)

Supplementary material 7 (XLSX 61 KB)

Supplementary material 8 (XLSX 10 KB)

Supplementary material 9 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Peng, L., Xie, C. et al. Genome-wide identification, characterization, and expression analyses of the HAK/KUP/KT potassium transporter gene family reveals their involvement in K+ deficient and abiotic stress responses in pear rootstock seedlings. Plant Growth Regul 85, 187–198 (2018). https://doi.org/10.1007/s10725-018-0382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0382-8

Keywords

Navigation