Skip to main content

Advertisement

Log in

AtHKT1;1 and AtHAK5 mediate low-affinity Na+ uptake in Arabidopsis thaliana under mild salt stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salinity is a serious problem for agricultural production worldwide. Reducing Na+ influx is one of the key steps for controlling Na+ accumulation in plants and improving salt tolerance of crop plants. Researches on a number of species are now converging on HKT-type and KUP/HAK/KT type proteins, both of them are probable candidates of Na+ uptake into the root. To assess the contribution of AtHKT1;1 and AtHAK5 to low-affinity Na+ uptake in Arabidopsis thaliana, the 22Na+ influx in A. thaliana wild type (WT) and hkt1;1 mutant (athkt1;1) with or without inhibitors (10 mM TEA+ or 5 mM NH4 +) were investigated, in addition, the expression levels of AtHKT1;1 and AtHAK5 in plants exposed to different concentrations of NaCl, KCl or KCl plus NaCl were analyzed. Results showed that TEA+ or NH4 + have no significant influence on 22Na+ influx in WT, but reduced 22Na+ influx by 42 and 46 %, respectively, in athkt1;1. Under 25 mM NaCl, 0.01 mM K+ facilitated higher net Na+ uptake rate in both WT and athkt1;1 than 2.5 mM K+. In addition, 0.01 mM K+ down-regulated AtHKT1;1 and up-regulated AtHAK5 in WT roots compared with 2.5 mM K+, and more interestingly, the transcript of AtHAK5 in athkt1;1 roots was always higher than that in WT roots during 48 h of 2.5 mM K+ plus 25 mM NaCl, and it increased continuously during 48 h of 0.01 mM K+ plus 25 mM NaCl. Therefore, it is proposed that AtHKT1;1 and AtHAK5 mediate low-affinity Na+ uptake, and both of them are regulated by external K+ concentrations. AtHKT1;1 might mediate low-affinity Na+ uptake under 2.5 mM K+, while 0.01 mM K+ might activate AtHAK5 and facilitate low-affinity Na+ uptake in WT. When AtHKT1;1 lost its function, AtHAK5 might mediate low-affinity Na+ uptake instead of AtHKT1;1 and this function becomes more important under low K+ condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AKT:

Arabidopsis K+ transporter

ANOVA:

Analysis of variance

Ct:

Threshold cycle

HAK:

High-affinity K+ transporter

HKT:

High-affinity K+ transporter

KIRC:

K+ inward rectifying channel

KORC:

K+ outward rectifying channel

KT:

K+ transporter

KUP:

K+ uptake transporter

NHX:

Tonoplast Na+/H+ antiporter

PCR:

Polymerase chain reaction

RFW:

Root fresh weight

SE:

Standard error

SOS1:

Plasma membrane Na+/H+ antiporter

TEA:

Tetraethylammonium

WT:

Wild type

References

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Bañuelos MA, Klein RD, Alexanderbowman SJ, Rodríguez-Navarro A (1995) A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. EMBO J 14:3021–3027

    PubMed Central  PubMed  Google Scholar 

  • Bañuelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    Article  PubMed Central  PubMed  Google Scholar 

  • Benito B, Garciadeblas B, Rodriguez-Navarro A (2012) HAK transporters from Physcomitrella patens and Yarrowia lipolytica mediate sodium uptake. Plant Cell Physiol 53:1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Eassah PA, Tester M, Véry AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xiao Q, Wu FH, Dong XJ, He JX, Pei ZM, Zheng HL (2010) Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity. Tree Physiol 30:1570–1585

    Article  CAS  PubMed  Google Scholar 

  • Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507

    Article  CAS  PubMed  Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Fu HH, Luan S (1998) AtKUP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 10:63–73

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fulgenzi FR, Peralta ML, Mangano S, Danna CH, Vallejo AJ, Puigdomenech P, Santa-María GE (2008) The ionic environment controls the contribution of the barley HvHAK1 transporter to potassium acquisition. Plant Physiol 147:252–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    Article  PubMed  Google Scholar 

  • Gierth M, Mäser P, Schroeder JI, (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haro R, Sainz L, Rubio F, Rodríguez-Navarro A (1999) Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol 31:511–520

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bonnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Physiol Mol Biol 40:539–569

    Article  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H (2011) Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J Biosci Bioeng 111:346–356

    Article  CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81

    Article  CAS  PubMed  Google Scholar 

  • Liu WH, Fairbairn DJ, Reid RJ, Schachtman DP (2001) Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability. Plant Physiol 127:283–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na + ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Maathuis FJM, Verlin D, Smith FA, Sanders D, Fernandez JA, Walker NA (1996) The physiological relevance of Na+-coupled K+-transport. Plant Physiol 112:1609–1616

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martínez-Cordero MA, Martínez V, Rubio F (2004) Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol Biol 56:413–421

    Article  PubMed  Google Scholar 

  • Martínez-Cordero MA, Martínez V, Rubio F (2005) High-affinity K+ uptake in pepper plants. J Exp Bot 56:1553–1562

    Article  PubMed  Google Scholar 

  • Mäser P, Markus G, Schroeder JI (2002) Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43–54

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Martínez-Cordero MA, Martínez V, Rubio F (2007) An NH4 +-sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Sci 172:273–280

    Article  CAS  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2010) The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Mol Plant 3:326–333

    Article  CAS  PubMed  Google Scholar 

  • Rains DW, Epstein E (1967) Sodium absorption by barley roots: role of the dual mechanisms of alkali cation transport. Plant Physiol 42:314–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubio F, Santa-María GE, Rodríguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34–43

    Article  CAS  Google Scholar 

  • Rubio F, Nieves-Cordones M, Alemán F, Martínez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plant 134:598–608

    Article  CAS  PubMed  Google Scholar 

  • Rubio F, Alemán F, Nieves-Cordones M, Martínez V (2010) Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K+ uptake. Physiol Plant 139:220–228

    Article  CAS  PubMed  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee B, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci 98:14150–14155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santa-María GE, Rubio F, Dubcovsky J, Rodríguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    Article  PubMed Central  PubMed  Google Scholar 

  • Santa-María GE, Danna CH, Czibener C (2000) High-affinity potassium transport in barley roots: ammonium-sensitive and -insensitive pathways. Plant Physiol 123:297–306

    Article  PubMed Central  PubMed  Google Scholar 

  • Schachtman DP (2000) Molecular insights into the structure and function of plant K+ transport mechanisms. Biochim Biophys Acta 1465:127–139

    Article  CAS  PubMed  Google Scholar 

  • Schleyer M, Bakker EP (1993) Nucleotide sequence and 3′ -end deletion studies indicate that the K(+)-uptake protein kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. J Bacteriol 175:6925–6931

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi HZ, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97:6896–6901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spalding EP, Hirsh RE, Lewis DR, Qi Z, Sussman MR, Lewis BD (1999) Potassium uptake supporting plant growth in the absence of AKT1 channel activity: inhibition by ammonium and stimulation by sodium. J Gen Physiol 113:909–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunarpi Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    Article  CAS  PubMed  Google Scholar 

  • Takahashi R, Liu S, Takano T (2007) Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants. J Exp Bot 58:4387–4395

    Article  CAS  PubMed  Google Scholar 

  • Tester M (1990) Plant ion channels: whole-cell and single-channel studies. New Phytol 114:305–340

    Article  Google Scholar 

  • Tester M, Davenport RJ (2003) Na+ transport and Na+ tolerance in higher plants. Ann Bot 91:503–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang SM, Zhang JL, Flowers TJ (2007) Low-affinity Na+ uptake in the halophyte Suaeda maritima. Plant Physiol 145:559–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang CM, Zhang JL, Liu XS, Li Z, Wu GQ, Cai JY, Flowers TJ, Wang SM (2009) Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell Environ 32:486–496

    Article  CAS  PubMed  Google Scholar 

  • Wu GQ, Xi JJ, Wang Q, Bao AK, Ma Q, Zhang JL, Wang SM (2011) The ZxNHX gene encoding tonoplast Na+/H+ antiporter from the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought. J Plant Physiol 168:758–767

    Article  CAS  PubMed  Google Scholar 

  • Xu HX, Jiang XY, Zhan KH, Cheng XY, Cheng XJ, Pardo JM, Cui D (2008) Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Arch Biochem Biophys 473:8–15

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  • Zhang HM, Kim MS, Sun Y, Dowd SE, Shi HZ, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    Article  PubMed  Google Scholar 

  • Zhang JL, Flowers TJ, Wang SM (2010) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326:45–60

    Article  CAS  Google Scholar 

  • Zhang JL, Flowers TJ, Wang SM (2013) Differentiation of low-affinity Na+ uptake pathways and kinetics of the effects of K+ on Na+ uptake in the halophyte Suaeda maritime. Plant Soil 368:629–640

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program, Grant No. 2014CB138701), the National Natural Science Foundation of China (Grant No. 31170431) and Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130211130001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suo-Min Wang.

Additional information

Qian Wang and Chao Guan have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Primer sequences used in this study (TIFF 273 kb)

10725_2014_9964_MOESM2_ESM.tif

Net Na+ (a), K+ (b) uptake rate of A. thaliana (WT and athkt1;1) under 2.5 or 0.01 mM K+ without 25 mM NaCl. Six-week-old plants treated with 2.5 or 0.01 mM K+ for 7 d to calculate net Na+ and K+ uptake rate. Five plants were pooled in each replicate (n = 6). Values are means ± SE and bars indicate SE. Columns with different letters indicate significant differences at P < 0.05 (Duncan’s test). (TIFF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Guan, C., Wang, P. et al. AtHKT1;1 and AtHAK5 mediate low-affinity Na+ uptake in Arabidopsis thaliana under mild salt stress. Plant Growth Regul 75, 615–623 (2015). https://doi.org/10.1007/s10725-014-9964-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9964-2

Keywords

Navigation