Skip to main content
Log in

In vitro conservation, phytochemistry, and medicinal activity of Artemisia tridentata Nutt.: metabolomics as a hypothesis-generating tool for plant tissue culture

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Artemisia tridentata Nutt. and related species in the subgenus Tridentatae are ecologically important plants with a rich history of ceremonial and medicinal use by the indigenous people of North America. With the exception of antimicrobial and insecticidal bioassays, there is limited data to support the traditional uses of A. tridentata. Additionally, wild A. tridentata populations are declining and conservation of genetic resources is warranted. The current study was designed to (a) develop in vitro protocols to conserve A. tridentata in axenic culture and to provide plant tissues for phytochemical analysis, (b) to investigate the presence of neurologically-active phytochemicals in A. tridentata and (c) to develop metabolomics as a tool for understanding secondary metabolite biosynthesis under aseptic conditions. A collection of in vitro-grown germplasm lines was established from wild-harvested seeds of A. tridentata. Neurotransmitters acetylcholine, GABA, melatonin and serotonin were identified and quantified in the plant tissues. Crude extracts of A. tridentata inhibited acetylcholinesterase in a bioassay. A metabolomics analysis with chemometric statistics quantified changes in the phytochemical profiles of wild-harvested plants and plantlets in axenic culture. A total of 1,543 phytochemicals were found in all samples of A. tridentata including 52 significant ions putatively identified as monoterpene, phenolic or sesquiterpene compounds. Together, these data provide the foundation for further investigations of the phytochemical diversity and medicinal activity of A. tridentata and demonstrate a research approach for use of metabolomics as a tool for understanding secondary metabolite biosynthesis under aseptic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ach:

Acetylcholine

AchE:

Acetylcholinesterase

GABA:

γ-Aminobutyric acid

MEL:

Melatonin

5HT:

Serotonin

References

  • Applewhite PB (1973) Serotonin and norepinephrine in plant tissues. Phytochemistry 12:191–192

    Article  CAS  Google Scholar 

  • Bamel K, Gupta SC, Gupta R (2007) Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings. Life Sci 80:2393–2396

    Google Scholar 

  • Biswas KK, Foster AJ, Aung T, Mahmoud SS (2009) Essential oil production: relationship with abundance of glandular trichomes in aerial surface of plants. Acta Physiol Plant 31:13–19

    Article  CAS  Google Scholar 

  • Bown AW, Shelp BJ (1989) The metabolism and physiological roles of 4-aminobutyric acid. Life Sci Adv Biochem 8:21–25

    Google Scholar 

  • Bown AW, Shelp BJ (1997) The metabolism and functions of γ-aminobutyric acid. Plant Physiol 115:1–5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boyd CS, Svejcar TJ (2011) The influence of plant removal on succession in Wyoming big sagebrush. J Arid Environ 75:734–741

    Article  Google Scholar 

  • Brown PN, Murch SJ (2012) Applications of metabolomics to medicinal plants for scientific study and drug discovery. Planta Med 78:1056

    Google Scholar 

  • Brown PN, Murch SJ, Shipley PR (2012a) Phytochemical diversity of cranberry (Vaccinium macrocarpon aiton) cultivars by anthocyanin determination and metabolomic profiling with chemometric analysis. J Agric Food Chem 60:261–271

    Article  CAS  PubMed  Google Scholar 

  • Brown PN, Turi CE, Shipley PR, Murch SJ (2012b) Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis. Planta Med 78:630–640

    Article  CAS  PubMed  Google Scholar 

  • Campbell SSB, Murch SJ, Saxena PK (2001) In vitro approaches to the conservation and development of medicinal plant species. In: Saxena PK (ed) Development of plant-based medicines:conservation, efficacy, and safety. Kluwer Academic Publishers, Netherlands, p 119

  • Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181

    Article  Google Scholar 

  • Davies KW, Boyd CS, Beck JL, Bates JD, Svejcar TJ, Gregg MA (2011) Saving the sagebrush sea: an ecosystem conservation plan for big sagebrush plant communities. Biol Conserv 144:2573–2584

    Article  Google Scholar 

  • Davies KW, Boyd CS, Nafus AM (2013) Restoring the sagebrush component in crested wheatgrass-dominated communities. Rangel Ecol Manag 66:472–478

    Article  Google Scholar 

  • Dunkel FV, Sears LJ (1998) Fumigant properties of physical preparations from mountain big sagebrush, Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) beetle for stored grain insects. J Stored Prod Res 34:307–321

    Article  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–90

    Article  CAS  PubMed  Google Scholar 

  • Ellsworth LM, Kauffman JB (2013) Seedbank responses to spring and fall prescribed fire in mountain big sagebrush ecosystems of differing ecological condition at Lava Beds National Monument, California. J Arid Environ 96:1–8

    Article  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

    Article  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  CAS  PubMed  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination RID B-9809-2009. J Pineal Res 51:1–16

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Garcia S, Garnatje T, McArthur ED, Pellicer J, Sanderson SC, Valles J (2011a) Taxonomic and nomenclatural rearrangements in Artemisia Subgen. Tridentatae, Including a redefinition of Sphaeromeria (Asteraceae, Anthemideae). West N Am Nat 71:158–163

    Article  Google Scholar 

  • Garcia S, McArthur ED, Pellicer J, Sanderson SC, Valles J, Garnatje T (2011b) A molecular phylogenetic approach to Western North America endemic Artemisia and Allies (Asteraceae): untangling the sagebrushes. Am J Bot 98:638–653

    Article  PubMed  Google Scholar 

  • Hartmann E, Gupta R (1989) Acetylcholine as a signalling system in plants. In: Boss WE, Marre DJ (eds) Second messengers in plant growth and development. Alan R Liss, New York, pp 257–288

    Google Scholar 

  • Hartmann E, Kilbinger H (1974) Occurrence of light-dependent acetylcholine concentrations in higher-plants. Experientia 30:1387–1388

    Article  CAS  Google Scholar 

  • Jaffe MJ (1970) Evidence for regulation of phytochrome-mediated processes in bean roots by neurohumor, acetylcholine. Plant Physiol 46:768–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones MPA, Cao J, O’Brien R, Murch SJ, Saxena PK (2007) The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L. Plant Cell Rep 26:1481–1490

    Article  CAS  PubMed  Google Scholar 

  • Jones AMP, Saxena PK, Murch SJ (2009) Elicitation of secondary metabolism in Echinacea purpurea L. by gibberellic acid and triazoles. Eng Life Sci 9:205–210

    Article  CAS  Google Scholar 

  • Karban R, Shiojiri K, Ishizaki S (2010) An air transfer experiment confirms the role of volatile cues in communication between plants. Am Nat 176:381–384

    Article  PubMed  Google Scholar 

  • Lazár D, Murch SJ, Beilby MJ, Al Khazaaly S (2013) Exogenous melatonin affects photosynthesis in characeae Chara australis. Plant Signal Behav 8(3):e23279

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu C, Guo C, Wang Y, Fan O (2003) Factors influencing artemisinin production from shoot cultures of Artemisia annua L. World J Microbiol Biotechnol 19:535–538

    Article  CAS  Google Scholar 

  • Liu CZ, Murch SJ, El-Demerdash M, Saxena PK (2004) Artemisia judaica L.: micropropagation and antioxidant activity. J Biotechnol 110:63–71

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kim DH, Kim JM, Park SJ, Cai M, Jang DS, Ryu JH (2012) The memory ameliorating effects of Artemisia princeps var. orientalis against cholinergic dysfunction in mice. Am J Chin Med 40:993–1005

    Article  PubMed  Google Scholar 

  • Lommen WJM, Schenk E, Bouwmeester HJ, Verstappen FWA (2006) Trichome dynamics and artemisinin accumulation during development and senescence of Artemisia annua leaves. Planta Med 72:336–345

    Article  CAS  PubMed  Google Scholar 

  • Lopes-Lutz D, Alviano DS, Alviano CS, Kolodziejczyk PP (2008) Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 69:1732–1738

    Article  CAS  PubMed  Google Scholar 

  • Mamelak M (2012) Sporadic alzheimer’s disease: the starving brain. J Alzheimers Dis 31:459–474

    PubMed  Google Scholar 

  • McCutcheon AR (1996) Ethnopharmacology of Western North American plants with special focus on the genus Artemisia L. Dissertation or Thesis, University of British Columbia

  • McCutcheon AR, Ellis SM, Hancock REW, Towers GHN (1994) Antifungal screening of medicinal plants of British Columbian Native Peoples. J Ethnopharmacol 44:157–169

    Article  CAS  PubMed  Google Scholar 

  • Mehta M, Malik M, Khurana J, Maheshwari S (1993) Phytochrome modulation of calcium fluxes in wheat (Triticum Aestivum L) protoplasts. Plant Growth Regul 12:293–302

    Article  CAS  Google Scholar 

  • Moerman DE (2009) Native American Ethnobotany. Timber Press, Portland, USA

  • Mohanty J, Jaffe J, Schulman E, Raible D (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods 202:133–141

    Google Scholar 

  • Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14:289–300

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2002a) Melatonin: a potential regulator of plant growth and development? In Vitro Cell Dev Biol Plant 38:531–536

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2002b) Mammalian neurohormones: potential significance in reproductive physiology of St. John’s wort (Hypericum perforatum L.)? Naturwissenschaften 89:555–560

    CAS  PubMed  Google Scholar 

  • Murch SJ, Saxena PK (2004) Role of indoleamines in regulation of morphogenesis in in vitro cultures of St. John’s wort (Hypericum perforatum L). Future Med Aromat Plants:425–432

  • Murch SJ, Simmons C, Saxena PK (1997) Melatonin in feverfew and other medicinal plants. Lancet 350:1598–1599

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, KrishnaRaj S, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704

    Google Scholar 

  • Murch SJ, Campbell S, Saxena PK (2001) The role of serotonin and melatonin in plant morphogenesis: regulation of auxin-induced root organogenesis in in vitro-cultured explants of St. John’s wort (Hypericum perforatum L.). In Vitro Cell Dev Biol Plant 37:786–793

  • Murch SJ, Alan AR, Cao J, Saxena PK (2009) Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res 47:277–283

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Hall BA, Le CH, Saxena PK (2010) Changes in the levels of indoleamine phytochemicals during veraison and ripening of wine grapes. J Pineal Res 49:95–100

    CAS  PubMed  Google Scholar 

  • Nguyen KT, Towler MJ, Weathers PJ (2013) The effect of roots and media constituents on trichomes and artemisinin production in Artemisia annua L. Plant Cell Rep 32:207–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okazaki M, Higuchi K, Aouini A, Ezura H (2010) Lowering intercellular melatonin levels by transgenic analysis of indoleamine 2,3-dioxygenase from rice in tomato plants. J Pineal Res 49:239–247

    Article  CAS  PubMed  Google Scholar 

  • Orhan IE, Belhattab R, Senol FS, Gulpinar AR, Hosbas S, Kartal M (2010) Profiling of cholinesterase inhibitory and antioxidant activities of Artemisia absinthium, A. herba-alba, A. fragrans, Marrubium vulgare, M. astranicum, Origanum vulgare subsp glandulossum and essential oil analysis of two Artemisia species. Ind Crop Prod 32:566–571

    Article  CAS  Google Scholar 

  • Paredes SD, Korkmaz A, Manchester LC, Tan D, Reiter RJ (2009) Phytomelatonin: a review RID E-3610-2010. J Exp Bot 60:57–69

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lee D, Jang H, Byeon Y, Kim Y, Back K (2013) Melatonin rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. J Pineal Res 54:258–263

    Article  CAS  PubMed  Google Scholar 

  • Pence VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol Plant 47:176–187

    Google Scholar 

  • Polichuk DR, Zhang Y, Reed DW, Schmidt JF, Covello PS (2010) A glandular trichome-specific monoterpene alcohol dehydrogenase from Artemisia annua. Phytochemistry 71:1264–1269

    Article  CAS  PubMed  Google Scholar 

  • Reed BM, Sarasan V, Kane M, Bunn E, Pence VC (2011) Biodiversity conservation and conservation biotechnology tools. In Vitro Cell Dev Biol Plant 47:1–4

    Article  CAS  Google Scholar 

  • Roshchina VV (2001) Neurotransmitters in plant life. Science Publishers, Enfield, USA

  • Rowland MM, Wisdom MJ, Suring LH, Meinke CW (2006) Greater sage-grouse as an umbrella species for sagebrush-associated vertebrates. Biol Conserv 129:323–335

    Article  Google Scholar 

  • Ruhland CT, Dyslin MJ, Krenz JD (2013) Wyoming big sagebrush screens ultraviolet radiation more effectively at higher elevations. J Arid Environ 96:19–22

    Article  Google Scholar 

  • Salloum GS, Isman MB (1989) Crude extracts of Asteraceous weeds—growth-inhibitors for variegated cutworm. J Chem Ecol 15:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Seher Y, Filiz O, Melike B (2013) Gamma-amino butyric acid, glutamate dehydrogenase and glutamate decarboxylase levels in phylogenetically divergent plants. Plant Syst Evol 299:403–412

    Article  CAS  Google Scholar 

  • Seifi HS, Curvers K, De Vleesschauwer D, Delaere I, Aziz A, Hofte M (2013) Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytol 199:490–504

    Article  CAS  PubMed  Google Scholar 

  • Shelp BJ, Van Cauwenberghe OR, Bown AW (2003) Gamma aminobutyrate: from intellectual curiosity to practical pest control. Can J Bot Rev 81:1045–1048

    Article  CAS  Google Scholar 

  • Shelp BJ, Mullen RT, Walker JC (2012) Compartmentation of GABA metabolism raises intriguing questions. Compartmentation of GABA metabolism raises intriguing questions. Trends Plant Sci 17:57–59

    Article  CAS  PubMed  Google Scholar 

  • Shultz LM (2009) Monograph for Artemisia. The American Society of Plant Taxonomists, USA

    Google Scholar 

  • Tezuka T, Akita I, Yoshino N, Suzuki Y (2007) Regulation of self-incompatibility by acetylcholine and cAMP in Lilium longiflorum. J Plant Physiol 164:878–885

    Article  CAS  PubMed  Google Scholar 

  • Tretyn A, Kendrick RE (1991) Acetylcholine in plants—presence, metabolism and mechanism of action. Bot Rev 57:33–73

    Article  Google Scholar 

  • Tretyn A, Kado RT, Kendrick RE (1997) Loading and localization of Fluo-3 and Fluo-3/AM calcium indicators in Sinapis alba root tissue. Folia Histochem Cytobiol 35:41–51

    CAS  PubMed  Google Scholar 

  • Turi CE, Murch SJ (2013) Targeted and untargeted phytochemistry of Ligusticum canbyi: indoleamines, phthalides, antioxidant potential, and use of metabolomics as a hypothesis-generating technique for compound discovery. Planta Med 79:1370–1379

    Article  CAS  PubMed  Google Scholar 

  • Turi CE, Shipley PR, Murch SJ (2013) North American Artemisia species from the subgenus Tridentatae (Sagebrush): a phytochemical, botanical and pharmacological review (Accepted). Phytochemistry

  • Turner NJ, Bouchard R, Kennedy D (1980) Ethnobotany of the Okanagan-Colville Indians of British Columbia and Washington. British Columbia Provincial Museum, Victoria, BC

  • Wallace W, Secor J, Schrader LE (1984) Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical stimulation. Plant Physiol 75:170–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weaver DK, Phillips TW, Dunke FV, Weaver T, Grubb RT, Nance EL (1995) Dried leaves from rocky-mountain plants decrease infestation by stored product beetles. J Chem Ecol 21:127–142

    Article  CAS  PubMed  Google Scholar 

  • Wijayratne UC, Pyke DA (2012) Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies. Am J Bot 99:438–447

    Article  PubMed  Google Scholar 

  • Wisniewska J, Tretyn A (1999) The effect of light on the level of acetylcholine in seedlings of the wild-type and phytochrome mutants of tomato (Lycopersicon esculentum Mill.). Acta Physiol Plant 21:221–230

    Article  CAS  Google Scholar 

  • Woods BA, Rachlow JL, Bunting SC, Johnson TR, Bocking K (2013) Managing high-elevation sagebrush steppe: do Conifer encroachment and prescribed fire affect habitat for pygmy rabbits? Rangel Ecol Manag 66:462–471

    Article  Google Scholar 

  • Yadav RK, Sangwan RS, Sabir F, Srivastava AK, Sangwan NS (2014) Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiol Biochem 74:70–83

    Article  CAS  PubMed  Google Scholar 

  • Yang CJ, Zhai ZX, Guo YH, Gao P (2007) Effects of acetylcholine, cytochalasin B and amiprophosmethyl on phloem transport in radish (Raphanus sativas). J Integr Plant Biol 49:550–555

    Article  CAS  Google Scholar 

  • Yuliana ND, Khatib A, Choi YH, Verpoorte R (2011) Metabolomics for bioactivity assessment of natural products. Phytother Res 25:157–169

    CAS  PubMed  Google Scholar 

  • Zhou M, Diwu Z, PanchukVoloshina N, Haugland R (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Osoyoos Desert Centre for access to botanical collections and wild populations of Artemisia. As well, the support of the Charles Fipke Foundation and the University of British Columbia Facility for Scanning Electron Microscopy are gratefully acknowledged.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Murch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turi, C.E., Axwik, K.E. & Murch, S.J. In vitro conservation, phytochemistry, and medicinal activity of Artemisia tridentata Nutt.: metabolomics as a hypothesis-generating tool for plant tissue culture. Plant Growth Regul 74, 239–250 (2014). https://doi.org/10.1007/s10725-014-9915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9915-y

Keywords

Navigation