Skip to main content
Log in

Gamma-amino butyric acid, glutamate dehydrogenase and glutamate decarboxylase levels in phylogenetically divergent plants

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Gamma-amino butyric acid (GABA) is a nonprotein amino acid found in a wide range of organisms including plants. Several studies have shown that GABA plays different roles in plant metabolism including carbon–nitrogen metabolism, energy balance, signaling and development. It has been suggested that the occurrence of GABA and the enzymes related to GABA biosynthesis in prokaryotes and eukaryotes may be important in evolution and diversification. However, studies of GABA biosynthesis and GABA levels in an evolutionary context are restricted to sequenced plant genomes. In this study we aimed to compare the activities of GDH and GAD enzymes and total nitrogen, and the contents of total soluble protein, succinate, glutamate, proline and GABA in plants from different phylogenetic levels including Ulva lactuca, Pseudevernia furfuracea, Nephrolepsis exaltata, Ginkgo biloba, Pinus pinea, Magnolia grandiflora, Nymphaea alba, Urtica dioica, Portulaca oleraceae, Malva sylvestris, Rosa canina, Lavandula stoechas, Washingtonia filifera, Avena barbata and Iris kaempferi. The activities of GAD and GDH enzymes differed according to the species and were not always parallel to GABA levels. The discrepancy in the contents of succinate and GABA between higher and primitive plants was also prominent. Glutamate levels were high with a few exceptions and proline contents were at similar low values as compared to other amino acids. Our results support the hypothesis that the GABA shunt plays a key role in carbon and nitrogen partitioning via linking amino acid metabolism and the tricarboxylic acid cycle which is essential for higher plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GABA:

Gamma amino butyric acid

GAD:

Glutamate decarboxylase

TCA:

Tricarboxylic acid

References

  • Akama K, Takaiwa F (2007) C-terminal extension of rice glutamate decarboxylase functions as an autoinhibitory domain and overexpression of a truncated mutant results in accumulation of extremely high levels of GABA in plant cells. J Exp Bot 58:2699–2707

    Article  PubMed  CAS  Google Scholar 

  • Akihiro T, Koike S, Tani R, Tominaga T, Watanabe S, Iijima Y, Aoki K, Shibata D, Ashihara H, Matsukura C, Akama K, Fujimura T, Ezura H (2008) Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol 49:1378–1389

    Article  PubMed  CAS  Google Scholar 

  • Andersson JO, Roger AJ (2003) Evolution of GDH genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes. BMC Evol Biol 3:14

    Article  PubMed  Google Scholar 

  • Arazi T, Baum G, Snedden WA, Shelp BJ, Fromm H (1995) Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase. Plant Physiol 108:551–561

    Article  PubMed  CAS  Google Scholar 

  • Aurisano N, Bertani A, Regianni R (1995) Anaerobic accumulation of γ-aminobutyrate in rice seedlings: causes and significance. Phytochemistry 38:1147–1150

    Article  CAS  Google Scholar 

  • Barbosa JM, Singh NK, Cherry JH, Locy RD (2010) Nitrate uptake and utilization is modulated by exogenous γ-aminobutyric acid in A. thaliana seedlings. Plant Physiol Biochem 48:443–450

    Article  PubMed  CAS  Google Scholar 

  • Bartyzel I, Pelczar K, Paszkowski A (2003) Functioning of the γ-aminobutyrate pathway in wheat seedlings affected by osmotic stress. Biol Plant 47(2):221–225

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, Fromm H (1996) Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. EMBO J 15(12):2988–2996

    PubMed  CAS  Google Scholar 

  • Bernard SM, Habash DZ (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol 182:608–620

    Article  PubMed  CAS  Google Scholar 

  • Binzel ML, Hasegawa PM, Rhodes D, Handa S, Handa AK, Bressan RA (1987) Solute accumulation in tobacco cells adapted to NaC1. Plant Physiol 84:1408–1415

    Article  PubMed  CAS  Google Scholar 

  • Bor M, Seckin B, Ozgur R, Yilmaz O, Ozdemir F, Turkan I (2009) Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutyric acid (GABA) levels of sesame. Acta Physiol Plant 31(3):655–659

    Article  CAS  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9(3):110–115

    Article  PubMed  CAS  Google Scholar 

  • Bouche N, Fait A, Bouchez D, Moller SG, Fromm H (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6848

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Floyd SK, Sakakibara K (2007) Green genes – comparative genomics of the green branch of life. Cell 129:229–234

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of μg quantities of protein utilizing the principle of the protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA (ed) Methods of soil analysis, part 2. American Society of Agronomy, Madison, pp 1149–1178

    Google Scholar 

  • Dahlman L, Persson J, Palmqvist K, Nasholm T (2004) Organic and inorganic nitrogen uptake in lichens. Planta 219:459–467

    Article  PubMed  CAS  Google Scholar 

  • Dubois F, Tercé-Laforgue T, Gonzalez-Moro MB, Estavillo MB, Sangwan R, Gallais A, Hirel B (2003) Glutamate dehydrogenase in plants: is there a new story for an old enzyme? Plant Physiol Biochem 41:565–576

    Article  CAS  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  PubMed  CAS  Google Scholar 

  • Fait A, Nesi AN, Angelovici R, Lehmann M, Pham PA, Song L, Haslam RP, Napier JA, Galili G, Fernie AR (2011) Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. Plant Physiol 57(3):1026–1042

    Article  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation and signalling. J Exp Bot 58:2339–2358

    Article  PubMed  CAS  Google Scholar 

  • Fredericoa AM, Zavattierib MA, Camposa MD, Cardosoa HG, McDonaldc AE, Arnholdt-Schmitta B (2009) The gymnosperm Pinus pinea contains both AOX gene subfamilies, AOX1 and AOX2. Physiol Plant 137:566–577

    Article  Google Scholar 

  • Geiger M, Walch-Liu P, Engels C, Harnecker J, Schulze ED, Ludewig F, Sonnewald U, Scheible WR, Stitt M (1998) Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids in young tobacco plants. Plant Cell Environ 21:253–268

    Article  CAS  Google Scholar 

  • Haudecoeur E, Planamentea S, Ciroua A, Tannièresa M, Shelp BJ, More S, Faurea D (2009) Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 106(34):14587–14592

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y (2004) Effect of -aminobutyric acid-enriched dairy production on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats. Br J Nutr 92:411–417

    Article  PubMed  CAS  Google Scholar 

  • Hilu KW, Borsch T, Müller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R, Sauquet H, Neinhuis C, Slotta TAB, Rohwer JG, Campbell CS, Chatrou LW (2003) Angiosperm phylogeny based on Matk sequence information. Am J Bot 90(12):1758–1776

    Article  PubMed  CAS  Google Scholar 

  • Hock-Hin Y, Yeow-Chin W (1994) Leaf protein contents and nitrogen-to-protein conversion factors for 90 plant species. Food Chem 49:245–250

    Article  Google Scholar 

  • Holtzapffel RC, Castelli J, Finnegan PM, Millar AH, Whelan J, Day DA (2003) A tomato alternative oxidase protein with altered regulatory properties. Biochim Biophys Acta 1606:153–162

    Article  PubMed  CAS  Google Scholar 

  • Jager HJ, Weigel HJ (1978) Amino acid metabolism in lichens. Bryologist 81(1):107–113

    Article  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Martinelli T, Whittaker A, Bochicchio A, Vazzana C, Suzuki A, Masclaux-Daubresse C (2007) Amino acid pattern and glutamate metabolism during dehydration stress in the ‘resurrection’ plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves. J Exp Bot 58:3037–3046

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Villaluenga C, Frías J, Vidal-Valverde C (2006) Functional lupin seeds (Lupinus albus and Lupinus luteus) after extraction of α-galactosidase. Food Chem 98:291–299

    Article  Google Scholar 

  • Michaeli S, Fait A, Lagor K, Nunes-Nesi A, Grillich N, Yellin A, Bar D, Khan M, Fernie AR, Turano FJ, Fromm H (2011) A mitochondrial GABA permease connects the GABA shunt and TCA cycle, and is essential for normal carbon metabolism. Plant J 67:485–498

    Article  PubMed  CAS  Google Scholar 

  • Molina-Rueda JJ, Pascual MB, Canovas FM, Gallardo F (2010) Characterization and developmental expression of glutamate decarboxylase from maritime pine. Planta 232(6):1471–1483

    Article  PubMed  CAS  Google Scholar 

  • Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008) Plant polyamine catabolism: the start of the art. Plant Signal Behav 3:1061–1066

    Article  PubMed  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114(1):47–59

    Article  PubMed  CAS  Google Scholar 

  • Pedersen MF, Borum J (1997) Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161:155–163

    Article  Google Scholar 

  • Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    Article  PubMed  Google Scholar 

  • Shelp BJ, Mullen RT, Waller JC (2012) Compartmentation of GABA metabolism raises intriguing questions. Trends Plant Sci 17(2):57–59

    Article  PubMed  CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14(11):2837–2847

    Article  PubMed  CAS  Google Scholar 

  • Snedden WA, Arazi T, Fromm H, Shelp BJ (1995) Calcium/calmodulin activation of soybean glutamate decarboxylase. Plant Physiol 108:543–549

    PubMed  CAS  Google Scholar 

  • Stewart FC, Thompson JF, Dent CE (1949) Gamma amino butyric acid: a constituent of the potato tuber? Science 110:439–440

    Article  Google Scholar 

  • Studart-Guimarães C, Fait A, Nunes-Nesi A, Carrari F, Usadel B, Fernie AR (2007) Reduced expression of succinyl-coenzyme A ligase can a compensated for by up-regulation of the gamma-aminobutyrate shunt in illuminated tomato leaves. Plant Physiol 145(3):626–639

    Article  PubMed  Google Scholar 

  • Stumpf DK, Burris RH (1981) Organic acid contents of soybean: age and source nitrogen. Plant Physiol 68:989–991

    Article  PubMed  CAS  Google Scholar 

  • Sukhareva BS, Mamaeva OK (2002) Glutamate decarboxylase computer studies of enzyme evolution. Biochemistry 67(10):1180–1188

    PubMed  CAS  Google Scholar 

  • Turano FJ, Fang TK (1998) Characterization of two glutamate decarboxylase cDNA clones from Arabidopsis. Plant Physiol 117:1411–1421

    Article  PubMed  CAS  Google Scholar 

  • Urbanczyk-Wochniak E, Baxter C, Kolbe A, Kopka J, Sweetlove LJ, Fernie AR (2005) Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta 221:891–903

    Article  PubMed  CAS  Google Scholar 

  • Willis KJ, McElwain JC (ed.) (2002) The evolution of plants. Oxford University Press, New York

Download references

Acknowledgments

The authors would like to thank Ege University Research Foundation for supporting this work (Grant Number 2009-FEN-020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bor Melike.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seher, Y., Filiz, O. & Melike, B. Gamma-amino butyric acid, glutamate dehydrogenase and glutamate decarboxylase levels in phylogenetically divergent plants. Plant Syst Evol 299, 403–412 (2013). https://doi.org/10.1007/s00606-012-0730-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0730-5

Keywords

Navigation