Skip to main content
Log in

High frequency multiple shoot induction from nodal segments and rhinacanthin production in the medicinal shrub Rhinacanthus nasutus (L.) Kurz

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

High frequency multiple shoots have been induced from nodal segments of Rhinacanthus nasutus (L.) Kurz., a potent anticancerous ethnomedicinal plant. For initiation of cultures, nodal segments were cultured on MS medium supplemented with various concentrations (1.0–5.0 μM) of 6-benzyladenine or thidiazuron (TDZ) alone or in combination with α-naphthalene acetic acid (NAA 0.5–1.0 μM). The optimum frequency of response (85 %) and shoot number (3.3) was observed on MS medium supplemented with 4.0 μM TDZ and 0.8 μM NAA. The shoots developed on initiation media were excised and nodal segments were subcultured on MS medium supplemented with TDZ (4.0 μM) and NAA (0.5–1.0 μM). This subculturing process was repeated thrice, each with 45 days of duration and the multiple shoot formation was recorded at the end of every subculture stage. The highest frequency of response (100 %) and number of multiple shoots (24.1) per explant were recorded at the end of the third subculture passage on MS medium supplemented with 4.0 μM TDZ and 0.8 μM NAA. The optimum rooting of shoots was observed on ½ MS medium fortified with 3.0 μM indole-3-butyric acid. The rooted plants were successfully transplanted to soil. The estimation of rhinacanthin (RC) content in shoots and roots was carried out in 6-month-old ex vitro plants (i.e., plants regenerated via in vitro culture) and field grown natural plants by high performance liquid chromatography. Both shoots and roots of naturally grown plants showed slightly higher RC content than ex vitro grown plants. The highest RC content (4.6 mg/g DW RC-C, 0.14 mg/g DW RC-D and 0.10 mg/g DW RC-N) was recorded in roots of naturally grown plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BA:

6-Benzyladenine

HPLC:

High performance liquid chromatography

IBA:

Indole-3-butyric acid

NAA:

α-Naphthalene acetic acid

RC:

Rhinacanthin

TDZ:

Thidiazuron (N-phenyl-N’-1,2,3-thiadiazol-5-yl urea)

References

  • Abraham J, Cheruvathur MK, Mani B, Thomas TD (2010) A rapid in vitro multiplication system for commercial propagation of pharmaceutically important Cyclea peltata (Lam) Hook and Thoms. based on enhanced axillary branching. Ind Crop Prod 31:92–98

    Article  CAS  Google Scholar 

  • Apisariyakul A, Wannereumol P, Watanakitwichai T, Apisarikul SA (1991) Study of some medicinal plants effective against oral Streptococcus spp. Thai J Pharmacol 13:121–128

    Google Scholar 

  • Arndt FJ, Rusch R, Stilfried HV (1976) SN 49537, a new cotton defoliant. Plant Physiol 57:99

    Google Scholar 

  • Baskaran P, Jayabalan N, Van Staden J (2011) Production of psoralen by in vitro regenerated plants from callus cultures of Psoralea corylifolia L. Plant Growth Regul 65:47–54

    Article  CAS  Google Scholar 

  • Baskaran P, Singh S, Van Staden J (2013) In vitro propagation, proscillaridin a production and antibacterial activity in Drimia robusta. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-013-0322-2

    Google Scholar 

  • Cheruvathur MK, Sivu AR, Pradeep NS, Thomas TD (2012) Shoot organogenesis from leaf callus and ISSR assessment for their identification of clonal fidelity in Rhinacanthus nasutus (L.) Kurz., a potent anticancerous ethnomedicinal plant. Ind Crop Prod 40:122–128

    Article  CAS  Google Scholar 

  • Cheruvathur MK, Kumar GK, Thomas TD (2013) Somatic embryogenesis and synthetic seed production in Rhinacanthus nasutus (L.) Kurz. Plant Cell Tissue Organ Cult 113:63–71

    Article  CAS  Google Scholar 

  • Farnsworth NR, Bunyapraphatsara N (1992) Thai medicinal plant: recommended for primary health care system. Prachachon, Bangkok

    Google Scholar 

  • Gokhale M, Bansal YK (2010) Assessment of secondary metabolites in in vitro regenerated plantlets of Oroxylum indicum (L.) Vent. Plant Tissue Cult Biotech 20:21–28

    Google Scholar 

  • Gotoh A, Sakaeda T, Kimura T, Shirakawa T, Wada Y, Wada A, Kimachi T, Takemoto Y, Iida A, Iwakawa S, Hirai M, Tomita H, Okamura N, Nakamura T, Okumura K (2004) Antiproliferative activity of Rhinacanthus nasutus (L.) KURZ extracts and the active moiety. Rhinacanthin C. Biol Pharm Bull 27:1070–1074

    Article  CAS  Google Scholar 

  • Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotech 10:8984–9000

    CAS  Google Scholar 

  • Lata H, Chandra S, Khan I, ElSohly MA (2009) Thidiazuron-induced high-frequency direct shoot organogenesis of Cannabis sativa L. In Vitro Cell Dev Biol-Plant 45:12–19

    Article  CAS  Google Scholar 

  • Mehta S, Rai PK, Rai DK, Rai NK, Rai AK, Bicanic D, Sharma B, Watal G (2010) LIBS-based detection of antioxidant elements in seeds of Emblica officinalis. Food Biophys 5:186–192

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Norton ME, Norton CR (1986) Change in shoot proliferation with repeated in vitro subculture of shoots of woody species of Rosaceae. Plant Cell Tissue Org Cult 5:187–197

    Article  Google Scholar 

  • Panichayupakaranant P, Meerungrueang W (2010) Effect of medium composition and light on root and rhinacanthin formation in Rhinacanthus nasutus cultures. Pharm Biol 48:1192–1197

    Article  CAS  PubMed  Google Scholar 

  • Panichayupakaranant P, Charoonratana T, Sirikatitham A (2009) RP-HPLC analysis of rhinacanthins in Rhinacanthus nasutus: validation and application for the preparation of rhinacanthin high-yielding extract. J Chromatogr Sci 47:705–708

    Article  CAS  PubMed  Google Scholar 

  • Patil JG, Ahire ML, Nitnaware KM, Panda S, Bhatt VP, Kishor PBK, Nikam TD (2013) In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding. Appl Microbiol Biotechnol 97:2379–2393

    Article  CAS  PubMed  Google Scholar 

  • Phulwaria M, Rai MK, Shekhawat NS (2013) An improved micropropagation of Arnebia hispidissima (Lehm.) DC. and assessment of genetic fidelity of micropropagated plants using DNA-based molecular markers. Appl Biochem Biotechnol 170:1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Prakash E, Sha Valli Khan PS, Sreenivasa Rao TJV, Meru ES (2006) Micropropagation of red sanders (Pterocarpus santalinus L.) using mature nodal explants. J For Res 11:329–335

    Article  Google Scholar 

  • Puttarak P, Charoonratana T, Panichayupakarananta P (2010) Antimicrobial activity and stability of rhinacanthins-rich Rhinacanthus nasutus extract. Phytomedicine 17:323–327

    Article  CAS  PubMed  Google Scholar 

  • Rai VR (2002) Rapid clonal propagation of Nothapodytes foetida (Wight) Sleumer—a threatened medicinal tree. In Vitro Cell Dev Biol 38:347–355

    Article  Google Scholar 

  • Rai PK, Jaiswal D, Rai DK, Sharma B, Watal G (2010) Antioxidant potential of oral feeding of Cynodon dactylon extract on diabetes induced oxidative stress. J Food Biochem 34:78–92

    Article  CAS  Google Scholar 

  • Rajasekaran T, Giridhar P, Ravishankar GA (2007) Production of steviosides in ex vitro and in vitro grown Stevia rebaudiana Bertoni. J Sci Food Agric 87:420–424

    Article  CAS  Google Scholar 

  • Raju CS, Kathiravan K, Aslam A, Shajahan A (2013) An efficient regeneration system via somatic embryogenesis in mango ginger (Curcuma amada Roxb.). Plant Cell Tissue Organ Cult 112:387–393

    Article  Google Scholar 

  • Reanmongkol W, Subhadhirasakul S, Panichayupakaranant P, Kim KM (2003) Antiallergic and antioxidant activities of some compounds from Thai medicinal plants. Pharm Biol 41:592–597

    Article  CAS  Google Scholar 

  • Sattar AM, Abdullah NA, Khan AH, Noor AM (2004) Evaluation of antifungal and anti bacterial activity of a local plant Rhinacanthus nasutus (L.). J Biol Sci 4:490–500

    Google Scholar 

  • Sendl A, Chen JL, Jolad SD, Stoddart C, Rozhon E, Kernan M (1996) Two new naphthoquinones with antiviral activity from Rhinacanthus nasutus. J Nat Prod 59:808–811

    Article  CAS  PubMed  Google Scholar 

  • Siddique I, Anis M (2007) In vitro shoot multiplication and plantlet regeneration from nodal explants of Cassia angustifolia (Vahl.): a medicinal plant. Acta Physiol Plant 29:233–238

    Article  CAS  Google Scholar 

  • Siripong P, Kanokmedhakul K, Piyaviruyakul S, Yahuafai J, Chanpai R, Ruchirawat S, Oku N (2006a) Antiproliferative naphthoquinone esters from Rhinacanthus nasutus KURZ. roots on various cancer cells. J Trad Med 23:166–172

    CAS  Google Scholar 

  • Siripong P, Yahuafai J, Shimizu K, Ichikawa K, Yonezawa S, Asai T, Kwanjai K, Somsak R, Natoto O (2006b) Antitumor activity of liposomal naphthoquinone esters isolated from Thai medicinal plant: Rhinacanthus nasutus Kurz. Biol Pharm Bull 29:2279–2283

    Article  CAS  PubMed  Google Scholar 

  • Siriwatanametanon N, Fiebich BL, Efferth T, Prieto JM, Heinrich M (2010) Traditionally used Thai medicinal plants: in vitro anti-inflammatory, anticancer and antioxidant activities. J Ethnopharmacol 130:196–207

    Article  PubMed  Google Scholar 

  • Suja SR, Lath PG, Pushpangadan P, Rajasekharan S (2004) Evaluation of hepatoprotective effects of Rhinacanthus nasutus root extracts. Ethnomedicine and ethnopharmacology division. Trop Bot Gard Res Doc 4:151–157

    Google Scholar 

  • Tewtrakul S, Tansakul P, Panichayupakaranant P (2009a) Effects of rhinacanthins from Rhinacanthus nasutus on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha releases using RAW264.7 macrophage cells. Phytomedicine 16:581–585

    Article  CAS  PubMed  Google Scholar 

  • Tewtrakul S, Tansakul P, Panichayupakaranant P (2009b) Antiallergic principles of Rhinacanthus nasutus leaves. Phytomedicine 16:929–934

    Article  CAS  PubMed  Google Scholar 

  • Thomas TD, Yoichiro H (2010) In vitro propagation for the conservation of a rare medicinal plant Justicia gendarussa Burm. f. by nodal explants and shoot regeneration from callus. Acta Physiol Plant 32:943–950

    Article  Google Scholar 

  • Vaishnav P, Demain AL (2010) Unexpected applications of secondary metabolites. Biotech Adv 29:223–229

    Article  Google Scholar 

  • Wongwattanasathien O, Kangsadalampai K, Tongyonk L (2010) Antimutagenicity of some flowers grown in Thailand. Food Chem Toxicol 48:1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Wu TS, Yang CC, Wu P, Liu L (1995) A Quinol and steroids from the leaves and stems of Rhinacanthus nasutus. Phytochemistry 40:1247–1249

    Article  CAS  Google Scholar 

  • Wu TS, Hsu HC, Wu PL, Teng CM, Wu YC (1998a) Naphthoquinone esters from the root of Rhinacanthus nasutus. Chem Pharm Bull 46:413–418

    Article  CAS  PubMed  Google Scholar 

  • Wu TS, Tien HJ, Yeh MY, Lee KH (1998b) Rhinacanthin Q, A naphthoquinone from Rhinacanthus nasutus and its biological activity. Phytochemistry 27:3787–3788

    Article  Google Scholar 

Download references

Acknowledgments

M.K.C is thankful to M.G. University, Kottayam, Kerala for the financial assistance in the form of University Junior Research Fellowship and Principal, St. Thomas College, Pala for providing lab facilities. T.D.T acknowledges the financial support from Indian National Science Academy (INSA, New Delhi) and Polish Academy of Sciences (PAS), Poland in the form of bilateral exchange programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dennis Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheruvathur, M.K., Thomas, T.D. High frequency multiple shoot induction from nodal segments and rhinacanthin production in the medicinal shrub Rhinacanthus nasutus (L.) Kurz. Plant Growth Regul 74, 47–54 (2014). https://doi.org/10.1007/s10725-014-9895-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9895-y

Keywords

Navigation