Skip to main content
Log in

Endogenous cytokinins in shoots of Aloe polyphylla cultured in vitro in relation to hyperhydricity, exogenous cytokinins and gelling agents

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The process of hyperhydricity in tissue cultured plants of Aloe polyphylla is affected by both applied cytokinins (CKs) and the type of gelling agent used to solidify the medium. Shoots were grown on media with agar or gelrite and supplemented with different concentrations of N6-benzyladenine (BA) or zeatin (0, 5 and 15 μM). Endogenous CKs were measured in in vitro regenerants after an 8-weeks cycle to examine whether the hyperhydricity-inducing effect of exogenous CKs and gelling agents is associated with changes in the endogenous CK content. On media with agar a reduction in hyperhydricity occurred, while the gelrite treatment produced both normal and hyperhydric shoots (HS). The content of endogenous CKs, determined by HPLC-mass spectrometry, in the shoots grown on CK-free media comprised isopentenyladenine-, trans-zeatin- and cis-zeatin-type CKs. The application of exogenous CKs resulted in an increase in the CK content of the shoots. Following application of zeatin, dihydrozeatin-type CKs were also detected in the newly-formed shoots. Application of BA to the media led to a transition from isoprenoid CKs to aromatic CKs in the shoots. Shoots grown on gelrite media contained higher levels of endogenous CKs compared to those on agar media. Total CK content of HS was higher than that of normal shoots grown on the same medium. We suggest that the ability of exogenous CKs and gelrite to induce hyperhydricity in shoots of Aloe polyphylla is at least partially due to up-regulation of endogenous CK levels. However, hyperhydricity is a multifactor process in which different factors intervene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

N6-benzyladenine

BA9G:

N6-benzyladenine 9-glucoside

BAR:

N6-benzyladenine 9-riboside

BARMP:

N6-benzyladenine 9-riboside- 5′-monophosphate

CK:

Cytokinin

DHZ:

Dihydrozeatin

DHZ9G:

Dihydrozeatin 9-glucoside

DHZOG:

Dihydrozeatin O-glucoside

DHZR:

Dihydrozeatin 9-riboside

DHZRMP:

Dihydrozeatin 9-riboside-5′-monophosphate

DHZROG:

Dihydrozeatin 9-riboside O-glucoside

DMAPP:

Dimethylallyl diphosphate

DW:

Dry weight

HS:

Hyperhydric shoots

IAC:

Immunoaffinity chromatography

IBA:

Indole-3-butyric acid

iP:

N6-(Δ2-Isopentenyl)adenine

iP9G:

N6-(Δ2-Isopentenyl)adenine 9-glucoside

iPR:

N6-(Δ2-Isopentenyl)adenine 9-riboside

iPRMP:

N6-(Δ2-Isopentenyl)adenine 9-riboside-5′-monophosphate

LC(+) ES–MS:

Liquid chromatography + electrospray ionization–mass spectrometry

NS:

Normal shoots

T:

Topolin

mT:

meta-Topolin

mT9G:

meta-Topolin 9-glucoside

mTOG:

meta-Topolin O-glucoside

mTR:

meta-Topolin 9-riboside

mTRMP:

meta-Topolin 9-riboside- 5′-monophosphate

mTROG:

meta-Topolin 9-riboside O-glucoside

oT:

ortho-Topolin

oT9G:

ortho-Topolin 9-glucoside

oTOG:

ortho-Topolin O-glucoside

oTR:

ortho-Topolin 9-riboside

oTRMP:

ortho-Topolin 9-riboside- 5′-monophosphate

oTROG:

ortho-Topolin 9-riboside O-glucoside

pT:

para-Topolin

pTOG:

para-Topolin O-glucoside

pTR:

para-Topolin 9-riboside

pTRMP:

para-Topolin 9-riboside- 5′-monophosphate

pTROG:

para-Topolin 9-riboside O-glucoside

Z:

Zeatin

Z9G:

Zeatin 9-glucoside

cZ:

cis-Zeatin

cZOG:

cis-Zeatin O-glucoside

cZR:

cis-Zeatin 9-riboside

cZRMP:

cis-Zeatin 9-riboside- 5′-monophosphate

cZROG:

cis-Zeatin 9-riboside O-glucoside

tZ:

trans-Zeatin

tZOG:

trans-Zeatin O-glucoside

tZR:

trans-Zeatin 9-riboside

tZRMP:

trans-Zeatin 9-riboside- 5′-monophosphate

tZROG:

trans-Zeatin 9-riboside O-glucoside

References

  • Abrie AL, Van Staden J (2001) Micropropagation of the endangered Aloe polyphylla. Plant Growth Regul 33:19–23

    Article  CAS  Google Scholar 

  • Armstrong DJ (1994) Cytokinin oxidase and the regulation of cytokinin degradation. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity, and function. CRC Press, Boca Raton, pp 139–154

    Google Scholar 

  • Åstot C, Doležal K, Nordström A, Wang Q, Kunkel T, Moritz T, Chua N-H, Sandberg G (2000) An alternative cytokinin biosynthesis pathway. Proc Natl Acad Sci USA 97:14778–14783

    Article  PubMed  Google Scholar 

  • Auer CA, Motyka V, Březinová A, Kamínek M (1999) Endogenous cytokinin accumulation and cytokinin oxidase activity during shoot organogenesis of Petunia hybrida. Physiol Plant 105:141–147

    Article  CAS  Google Scholar 

  • Bornman CH , Vogelmann TC (1984) Effect of rigidity of gel medium on benzyladenine-induced adventitious bud formation and vitrification in vitro in Picea abies. Physiol Plant 61:505–512

    Article  CAS  Google Scholar 

  • Brzobohatý B, Moore I, Kristoffersen P, Bakó L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a β-glucosidase localized to the maize root meristem. Science 262:1051–1054

    Article  PubMed  Google Scholar 

  • Dantas de Oliveira ÂK, Cañal MJ, Centeno ML, Feito I, Fernández B (1997) Endogenous plant growth regulators in carnation tissue cultures under different conditions of ventilation. Plant Growth Regul 22:169–174

    Article  Google Scholar 

  • Debergh P, Aitken-Christie J, Cohen D, Grout B, von Arnold S, Zimmerman R, Ziv M (1992) Reconsideration of the term “vitrification” as used in micropropagation. Plant Cell Tiss Org Cult 30:135–140

    Article  Google Scholar 

  • Emery RJN, Leport L, Barton JE, Turner NC, Atkins CA (1998) cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol 117:1515–1523

    Article  PubMed  CAS  Google Scholar 

  • Emery RJN, Ma Q, Atkins CA (2000) The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol 123:1593–1604

    Article  PubMed  CAS  Google Scholar 

  • Faiss M, Zalubilová J, Strnad M, Schmülling T (1997) Conditional expression of the ipt gene indicates a function for cytokinins in paracrine signalling in whole tobacco plants. Plant J 12:401–415

    Article  PubMed  CAS  Google Scholar 

  • Feito I, Rodríguez A, Centeno ML, Sánchez-Tamés R, Fernández B (1994) Effect of the physical nature of the culture medium on the metabolism of benzyladenine and endogenous cytokinins in Actinidia deliciosa tissues cultured in vitro. Physiol Plant 91:449–453

    Article  CAS  Google Scholar 

  • Feito I, Rodríguez A, Centeno ML, Sánchez-Tamés R, Fernández B (1995) Effect of applied benzyladenine on endogenous cytokinin content during the early stages of bud development of kiwifruit. Physiol Plant 95:241–246

    Article  CAS  Google Scholar 

  • Franck T, Kevers C, Gaspar T (1995) Protective enzymatic systems against activated oxygen species compared in normal and vitrified shoots of Prunus avium L. raised in vitro. Plant Growth Regul 16:253–256

    Article  CAS  Google Scholar 

  • Frick H (1991) Vitrification in vivo in Lemna minor and its maintenance by isopentenyl adenine. J Plant Physiol 137:502–504

    CAS  Google Scholar 

  • Gaspar T (1991) Vitrification in micropropagation. In: Bajaj YPS (ed), Biotechnology in agriculture and forestry, vol (17). High-tech and micropropagation I. Springer, Berlin, pp 116–126

    Google Scholar 

  • Gaspar T, Kevers C, Bisbis B, Franck T, Crèvecoeur M, Greppin H, Dommes J (2000) Loss of plant organogenic totipotency in the course of in vitro neoplastic progression. In Vitro Cell Dev Biol Plant 36:171–181

    CAS  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture. Part 1: The Technology (2nd ed). Exegetics Ltd, Edington, pp 574

    Google Scholar 

  • Kamínek M, Vaněk T, Motyka V (1987) Cytokinin activities of N6-benzyladenosine derivatives hydroxylated on the side-chain phenyl ring. J Plant Growth Regul 6:113–120

    Article  Google Scholar 

  • Kataeva NV, Alexandrova IG, Butenko RG, Dragavtceva EV (1991) Effect of applied and internal hormones on vitrification and apical necrosis of different plants cultured in vitro. Plant Cell Tiss Org Cult 27:149–154

    Article  CAS  Google Scholar 

  • Kevers C, Coumans M, Coumans-Gillès M-F, Gaspar T (1984) Physiological and biochemical events leading to vitrification of plants cultured in vitro. Physiol Plant 61:69–74

    Article  CAS  Google Scholar 

  • Krikorian AD (1995) Hormones in tissue culture and micropropagation. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 774–796

    Google Scholar 

  • Leshem B, Shaley DP, Izhar S (1988) Cytokinin as an inducer of vitrification in melon. Ann Bot 61:255–260

    CAS  Google Scholar 

  • Letham DS (1994) Cytokinins as phytohormones—sites of biosynthesis, translocation, and function of translocated cytokinin. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity, and function. CRC Press, Boca Raton, pp 57–80

    Google Scholar 

  • Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  PubMed  CAS  Google Scholar 

  • Motyka V, Faiss M, Strnad M, Kamínek M, Schmülling T (1996) Changes in cytokinin content and cytokinin oxidase activity in response to derepression of ipt gene transcription in transgenic tobacco calli and plants. Plant Physiol 112:1035–1043

    PubMed  CAS  Google Scholar 

  • Motyka V, Vaňková R, Čapková V, Petrášek J, Kamínek M, Schmülling T (2003) Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol Plant 117:11–21

    Article  CAS  Google Scholar 

  • Murashige T,Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nairn BJ, Furneaux RH, Stevenson TT (1995) Identification of an agar constituent responsible for hydric control in micropropagation of radiata pine. Plant Cell Tiss Org Cult 43:1–11

    Article  CAS  Google Scholar 

  • Novák O, Tarkowski P, Tarkowská D, Doležal K, Lenobel R, Strnad M (2003) Quantitative analysis of cytokinins in plants by liquid chromatography/single- quadrupole mass spectrometry. Anal Chim Acta 480:207–218

    Article  CAS  Google Scholar 

  • Ochatt SJ, Muneaux E, Machado C, Jacas L, Pontécaille C (2002) The hyperhydricity of in vitro regenerants of grass pea (Lathyrus sativus L.) is linked with an abnormal DNA content. J Plant Physiol 159:1021–1028

    Article  CAS  Google Scholar 

  • Pasqualetto P-L, Zimmerman RH, Fordham I (1986) Gelling agent and growth regulator effects on shoot vitrification of “Gala” apple in vitro. J Am Soc Hortic Sci 111:976–980

    CAS  Google Scholar 

  • Pasqualetto P-L, Zimmerman RH, Fordham I (1988) The influence of cation and gelling agent concentrations on vitrification of apple cultivars in vitro. Plant Cell Tiss Org Cult 14:31–40

    Article  CAS  Google Scholar 

  • Picoli EAT, Otoni WC, Figueira ML, Carolino SMB, Almeida RS, Silva EAM, Carvalho CR, Fontes EPB (2001) Hyperhydricity in in vitro eggplant regenerated plants: structural characteristics and involvement of BiP (Binding Protein). Plant Sci 160:857–868

    Article  PubMed  CAS  Google Scholar 

  • Prinsen E, Kamínek M, Van Onckelen HA (1997) Cytokinin biosynthesis: a black box?. Plant Growth Regul 23:3–15

    Article  CAS  Google Scholar 

  • Saher S, Piqueras A, Hellin E, Olmos E (2004) Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress. Physiol Plant 120:152–161

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H, Takei K (2002) Identification of cytokinin biosynthesis genes in Arabidopsis: a breakthrough for understanding the metabolic pathway and the regulation in higher plants. J Plant Growth Regul 21:17–23

    Article  PubMed  CAS  Google Scholar 

  • Schmitz RY, Skoog F, Playtis AJ, Leonard NJ (1972) Cytokinins: synthesis and biological activity of geometric and position isomers of zeatin. Plant Physiol 50:702–705

    Article  PubMed  CAS  Google Scholar 

  • Strnad M (1997) The aromatic cytokinins. Physiol Plant 101:674–688

    Article  CAS  Google Scholar 

  • Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J Biol Chem 279:41866–41872

    Article  PubMed  CAS  Google Scholar 

  • Taylor NJ, Stirk WA, Van Staden J (2003) The elusive cytokinin biosynthetic pathway. S Afr J Bot 69:269–281

    CAS  Google Scholar 

  • Van Staden J, Drewes FE (1991) The biological activity of cytokinin derivatives in the soybean callus bioassay. Plant Growth Regul 10:109–115

    Article  Google Scholar 

  • Van Staden J, Crouch NR (1996) Benzyladenine and derivatives—their significance and interconversion in plants. Plant Growth Regul 19:153–175

    Article  Google Scholar 

  • Vandemoortele J-L, Kevers C, Billard J-P, Gaspar T (2001) Osmotic pretreatment promotes axillary shooting from cauliflower curd pieces by acting through internal cytokinin level modifications. J Plant Physiol 158:221–225

    Article  CAS  Google Scholar 

  • Vankova R, Hsiao K-C, Bornman CH, Gaudinova A (1991) Effects of synthetic cytokinins on levels of endogenous cytokinins and respiration patterns of Beta vulgaris cells in suspension. J Plant Growth Regul 10:197–199

    Article  CAS  Google Scholar 

  • Veach YK, Martin RC, Mok DWS, Malbeck J, Vankova R, Mok MC (2003) O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol 131:1374–1380

    Article  PubMed  CAS  Google Scholar 

  • Williams RR, Taji AM (1991) Effect of temperature, gel concentration and cytokinins on vitrification of Olearia microdisca (JM Black) in vitro shoot cultures. Plant Cell Tiss Org Cult 26:1–6

    Article  CAS  Google Scholar 

  • Zažímalová E, Kamínek M, Březinová A, Motyka V (1999) Control of cytokinin biosynthesis and metabolism. In: Hooykaas PJJ, Hall MA and Libbenga KR (eds) Biochemistry and molecular biology of plant␣hormones. Elsevier Science B.V., Amsterdam, pp␣141–160

    Google Scholar 

  • Zimmerman TW, Rogers SMD, Cobb BG (1991) Controlling vitrification of petunia in vitro. In Vitro Cell Dev Biol Plant 27:165–167

    Google Scholar 

  • Ziv M (1991) Vitrification: morphological and physiological disorders of in vitro plants. In: Debergh PC and Zimmerman RH (eds) Micropropagation: technology and application. Kluwer Academic Publishers, Dordrecht, pp 45–69

    Google Scholar 

  • Ziv M, Ariel T (1992) On the relation between vitrification and stomatal cell wall deformity in carnation leaves in␣vitro. Acta Hort 314:121–129

    Google Scholar 

Download references

Acknowledgements

The National Research Foundation, Pretoria, Republic of South Africa, the Grant Agency of the Czech Republic (grant No. 301/05/0418) and the Czech Ministry of Education (grant No. MSM 6198959216) are thanked for financial assistance. M.I. thanks Dr W. Stirk and Prof R. Beckett for their helpful criticism and careful reading of the manuscript and A. Nsabimana for help with statistical analysis. M.S. thanks H. Martinková and P.␣Amarkorová for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Van Staden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, M., Novák, O., Strnad, M. et al. Endogenous cytokinins in shoots of Aloe polyphylla cultured in vitro in relation to hyperhydricity, exogenous cytokinins and gelling agents. Plant Growth Regul 50, 219–230 (2006). https://doi.org/10.1007/s10725-006-9139-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-006-9139-x

Keywords

Navigation