Skip to main content

Advertisement

Log in

Genetic diversity analysis of sorghum genotypes for sustainable genetic resource conservation and its implication for breeding program in ethiopia

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Ethiopia is considered to be the center of origin and diversity for sorghum [Sorghum bicolor (L.) Moench]. Knowledge of the genetic structure of the crop is important for its improvement and proper conservation. Therefore, the present study targeted to explore the genetic diversity and population structure of 92 Ethiopian sorghum genotypes representing five populations using 12 polymorphic microsatellite markers. The study resulted in a total of 77 alleles across the entire loci and populations. All the used microsatellite loci were highly polymorphic with PIC ranging from 0.66 to 0.82 with overall mean of 0.76. The analysis confirmed the presence of high within-population diversity with Nei’s gene diversity ranging from 0.71 to 0.84 with overall mean of 0.79. Analysis of molecular variance (AMOVA) confirmed high genetic differentiation (FST = 0.29) where 90% of the total genetic variation resides within populations, leaving only 10% among populations. The PCoA, clustering, and population structure did not cluster the studied populations into sharply genetically distinct clusters according to their geographical areas of sampling due to the presence of considerable gene flow (Nm = 2.13). Overall, the used microsatellite loci were highly informative and hence, a useful genetic tool to investigate the genetic structure of sorghum. Among the five studied, populations from North Gondar (Het = 0.75) and South Tigray region (Het = 0.74) showed the highest genetic diversity, and hence these areas could be considered as hot spots for identification of supper-performing genotypes to be used in sorghum breeding program, and also for designing appropriate germplasm conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed as part of this study are included in this published article.

Abbreviations

AMOVA:

Analysis of molecular variance

FIS:

Inbreeding coefficient

FIT:

Overall inbreeding coefficient

FST:

Fixation index

GD:

Gene diversity

He:

Heterozygosity

I:

Shannon’s index

MAF:

Major allele frequency

Na:

Number of allele

NABRC:

National agricultural biotechnology research center

Ne:

Number of effective alleles

Nm:

Gene flow

PAGE:

Polyacrylamide gel electrophoresis

PCoA:

Principal cordinate analysis

PIC:

Polymorphic information content

SSR:

Simple sequence repeats

References

  • Adugna A (2014) Analysis of in situ diversity and population structure in Ethiopian cultivated Sorghum bicolor (L.) landraces using phenotypic traits and SSR markers. Springerplus 3(1):1–14

    Article  Google Scholar 

  • Adugna A, Snow AA, Sweeney PM, Bekele E, Mutegi E (2013) Population genetic structure of in situ wild Sorghum bicolor in its Ethiopian center of origin based on SSR markers. Genet Resour Crop Evol 60(4):1313–1328

    Article  Google Scholar 

  • Afolayan G, Deshpande SP, Aladele SE, Kolawole AO, Angarawai I, Nwosu DJ, Michael C, Blay ET, Danquah EY (2019) Genetic diversity assessment of sorghum (Sorghum bicolor (L.) Moench) accessions using single nucleotide polymorphism markers. Plant Genetic Resour 17(5):412–420

    Article  CAS  Google Scholar 

  • Ali ML, Rajewski JF, Baenziger PS, Gill KS, Eskridge KM, Dweikat I (2008) Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Mol Breeding 21(4):497–509

    Article  CAS  Google Scholar 

  • Almekinders CJM, Elings A (2001) Collaboration of farmers and breeders: Participatory crop improvement in perspective. Euphytica 122(3):425–438

    Article  Google Scholar 

  • Appa Rao S, Prasada Rao KE, Mengesha MH, Reddy VG (1996) Morphological diversity in sorghum germplasm from India. Genet Resour Crop Evol 43(6):559–567

    Article  Google Scholar 

  • Ayana A, Bryngelsson T, Bekele E (2000) Genetic variation of Ethiopian and Eritrean sorghum (Sorghum bicolor (L.) Moench) germplasm assessed by random amplified polymorphic DNA (RAPD). Genetic Resour Crop Evol 47(5):471–482

    Article  Google Scholar 

  • Billot C, Ramu P, Bouchet S, Chantereau J, Deu M, Gardes L, Noyer JL, Rami JF, Rivallan R, Li Y, Lu P (2013) Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS ONE 8(4):e59714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bucheyeki TL, Gwanama C, Mgonja M, Chisi M, Folkertsma R, Mutegi R (2009) Genetic variability characterisation of Tanzania sorghum landraces based on simple sequence repeats (SSRs) molecular and morphological markers. Afr Crop Sci J. https://doi.org/10.4314/acsj.v17i2.54201

    Article  Google Scholar 

  • Burow G, Franks CD, Xin Z, Burke JJ (2012) Genetic diversity in a collection of Chinese sorghum landraces assessed by microsatellites. Am J Plant Sci. https://doi.org/10.4236/ajps.2012.312210

    Article  Google Scholar 

  • Cuevas HE, Prom LK (2020) Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection. BMC Genomics 21(1):1–15

    Article  Google Scholar 

  • Cuevas HE, Prom LK, Cooper EA, Knoll JE, Ni X (2018) Genome-wide association mapping of anthracnose (Colletotrichum sublineolum) resistance in the US sorghum association panel. Plant Genome 11(2):170099

    Article  Google Scholar 

  • Disasa T, Feyissa T, Admassu B (2017) Characterization of Ethiopian sweet sorghum accessions for 0brix, morphological and grain yield traits. Sugar Tech 19(1):72–82

    Article  CAS  Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • El-Amin HKA, Hamza NB (2013) Phylogenetic diversity of Sorghum bicolor (L.) Moench accessions from different regions in Sudan. Am J Biochem Mol Biol 3(1):127–134

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Evans LT (1984) Darwin’s use of the analogy between artificial and natural selection. J Hist Biol 17:113–140

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2019). Food and agriculture organization of the United Nations. Database. Available at: http://faostat.fao.org/databas

  • Gasura E, Setimela PS, Souta CM (2015) Evaluation of the performance of sorghum genotypes using GGE biplot. Can J Plant Sci 95(6):1205–1214

    Article  Google Scholar 

  • Ghebru B, Schmidt R, Bennetzen J (2002) Genetic diversity of Eritrean sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 105(2):229–236

    Article  CAS  PubMed  Google Scholar 

  • Girma A, Seo W, She RC (2019) Antibacterial activity of varying UMF-graded Manuka honeys. PLoS ONE 14(10):e0224495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Res Int. https://doi.org/10.1155/2015/431487

    Article  Google Scholar 

  • Greenbaum G, Templeton AR, Zarmi Y, Bar-David S (2014) Allelic richness following population founding events–a stochastic modeling framework incorporating gene flow and genetic drift. PLoS ONE 9(12):e115203

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128(6):999–1017

    Article  PubMed  Google Scholar 

  • Jordan DR, Tao YZ, Godwin ID, Henzell RG, Cooper M, McIntyre CL (1998) Loss of genetic diversity associated with selection for resistance to sorghum midge in Australian sorghum. Euphytica 102(1):1–7

    Article  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15(5):1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen PS, Jahoor A, Andersen JR, Cericola F, Orabi J, Janss LL, Jensen J (2018) Genome-wide association studies and comparison of models and cross-validation strategies for genomic prediction of quality traits in advanced winter wheat breeding lines. Front Plant Sci 9:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Labeyrie V, Deu M, Barnaud A, Calatayud C, Buiron M, Wambugu P, Manel S, Glaszmann JC, Leclerc C (2014) Influence of ethnolinguistic diversity on the sorghum genetic patterns in subsistence farming systems in Eastern Kenya. PLoS ONE 9(3):e92178

    Article  PubMed  PubMed Central  Google Scholar 

  • Leff B, Ramankutty N, Foley JA (2004) Geographic distribution of major crops across the world. Global Biogeochem Cycles. https://doi.org/10.1029/2003GB002108

    Article  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput diversity array technology (DArT) markers. BMC Plant Biol 9(1):1–14

    Article  Google Scholar 

  • Manzelli M, Pileri L, Lacerenza N, Benedettelli S, Vecchio V (2007) Genetic diversity assessment in Somali sorghum (Sorghum bicolor (L.) Moench) accessions using microsatellite markers. Biodivers Conserv 16(6):1715–1730

    Article  Google Scholar 

  • Mathur S, Umakanth AV, Tonapi VA, Sharma R, Sharma MK (2017) Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol Biofuels 10(1):1–19

    Article  CAS  Google Scholar 

  • Mengistu MG, Steyn JM, Kunz RP, Doidge I, Hlophe HB, Everson CS, Jewitt GPW, Clulow AD (2016) A preliminary investigation of the water use efficiency of sweet sorghum for biofuel in South Africa. Water SA 42(1):152–160

    Article  Google Scholar 

  • Missihoun AA, Adoukonou-Sagbadja H, Sedah P, Agbangla C, Ahanhanzo C, Dagba RA (2015) Genetic diversity of Sorghum bicolor (L.) Moench landraces from Northwestern Benin as revealed by microsatellite markers. Afr J Biotechnol 14(16):1342–1353

    Article  Google Scholar 

  • Mofokeng A, Shimelis H, Tongoona P, Laing M (2014) A genetic diversity analysis of South African sorghum genotypes using SSR markers. South Afr J Plant Soil 31(3):145–152

    Article  Google Scholar 

  • Motlhaodi T, Geleta M, Chite S, Fatih M, Ortiz R, Bryngelsson T (2017) Genetic diversity in sorghum [Sorghum bicolor (L.) Moench] germplasm from Southern Africa as revealed by microsatellite markers and agro-morphological traits. Genetic Resour Crop Evol 64(3):599–610

    Article  CAS  Google Scholar 

  • Muui CW, Muasya RM, Kirubi DT, Runo SM, Karugu A (2016) Genetic variability of sorghum landraces from lower Eastern Kenya based on simple sequence repeats (SSRs) markers. Afr J Biotech 15(8):264–271

    Article  CAS  Google Scholar 

  • Ng’uni D, Geleta M, Bryngelsson T (2011) Genetic diversity in sorghum (Sorghum bicolor (L.) Moench) accessions of Zambia as revealed by simple sequence repeats (SSR). Hereditas 148(2):52–62

    Article  PubMed  Google Scholar 

  • Ng'uni D, Geleta M, Hofvander P, Fatih M, Bryngelsson T (2012) Comparative genetic diversity and nutritional quality variation among some important Southern African sorghum accessions ['Sorghum bicolor'(L.) Moench]. Aust J Crop Sci, 6(1):56–64

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in excel population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  • Perrier X, Flori A (2003) Methods of data analysis. In: Press CRC (ed) Genetic diversity of cultivated tropical plants. pp 47–80

    Google Scholar 

  • Poehlman JM, Sleper DA, (1979) Breeding field crops. eds (No. 631.5220 POE 1995. CIMMYT)

  • Pritchard JK, Wen W, Falush D (2003) Documentation for the structure software, version 2. Department of Human Genetics, University of Chicago, Chicago

  • Ramu P, Billot C, Rami JF, Senthilvel S, Upadhyaya HD, Ananda Reddy L, Hash CT (2013) Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theor Appl Genet 126(8):2051–2064

    Article  CAS  PubMed  Google Scholar 

  • Reddy BV, Ramesh S, Reddy PS, Kumar AA, Tropics SA (2009) Genetic enhancement for drought tolerance in sorghum. Plant Breed Rev 31:189–222

    CAS  Google Scholar 

  • Rhodes DH, Hoffmann L, Rooney WL, Herald TJ, Bean S, Boyles R, Brenton ZW, Kresovich S (2017) Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics 18(1):1–8

    Article  Google Scholar 

  • Ritter KB, McIntyre CL, Godwin ID, Jordan DR, Chapman SC (2007) An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica 157(1):161–176

    Article  CAS  Google Scholar 

  • Semahegn Z (2019) The genetic improvement of sorghum in Ethiopia: review. JBAH [Internet]. 2019 Feb [cited 2022 Mar 3]

  • Shete S, Tiwari H, Elston RC (2000) On estimating the heterozygosity and polymorphism information content value. Theor Popul Biol 57(3):265–271

    Article  CAS  PubMed  Google Scholar 

  • Singh SP (1985) Sources of cold tolerance in grain sorghum. Can J Plant Sci 65(2):251–257

    Article  Google Scholar 

  • Singh R, Axtell JD (1973) High lysine mutant gene (hl that improves protein quality and biological value of grain sorghum 1. Crop Sci 13(5):535–539

    Article  CAS  Google Scholar 

  • Statista (2020). Sorghum production worldwide in 2019/2020, by leading country (in 1,000 metric tons). Hamburg: Statista

  • Swarup S, Cargill EJ, Crosby K, Flagel L, Kniskern J, Glenn KC (2021) Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci 61(2):839–852. https://doi.org/10.1002/csc2.20377

    Article  Google Scholar 

  • Tesfamichael TA, Githiri SM, Kasili RW, Skilton RA, Solomon M, Nyende AB (2014) Genetic diversity analysis of Eritrean sorghum (Sorghum bicolor (L.) Moench) germplasm using SSR markers. Mol Plant Breed. https://doi.org/10.5376/mpb.2014.05.0013

    Article  Google Scholar 

  • Thomas M, Demeulenaere E, Dawson JC, Khan AR, Galic N, Jouanne-Pin S, Remoué C, Bonneuil C, Goldringer I (2012) On-farm dynamic management of genetic diversity: the impact of seed diffusions and seed saving practices on a population-variety of bread wheat. EvOl Appl 5(8):779–795

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD, Reddy KN, Vetriventhan M, Ahmed MI, Krishna GM, Reddy MT, Singh SK (2017) Sorghum germplasm from West and Central Africa maintained in the ICRISAT genebank: status, gaps, and diversity. Crop J 5(6):518–532

    Article  Google Scholar 

  • Vus NA, Kobyzeva LN, Bezuglaya ON (2020) Determination of the breeding value of collection chickpea (Cicer arietinum L) accessions by cluster analysis. Vavilov J Genet Breed 24(3):244

    Article  CAS  Google Scholar 

  • Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic acids research, 41(W1):W77-W83

  • Wang ML, Zhu C, Barkley NA, Chen Z, Erpelding JE, Murray SC, Tuinstra MR, Tesso T, Pederson GA, Yu J (2009) Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theor Appl Genet 120(1):13–23

    Article  PubMed  Google Scholar 

  • Weerasooriya DK, Maulana FR, Bandara AY, Tirfessa A, Ayana A, Mengistu G, Nouh K, Tesso TT (2016) Genetic diversity and population structure among sorghum (Sorghum bicolor, L.) germplasm collections from Western Ethiopia. Afr J Biotechnol 15(23):1147–1158

    CAS  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Institute of Biotechnology of Addis Ababa University and the National Agricultural Biotechnology Research Center of the Ethiopian Institute of Agricultural Research (EIAR) for the complete financial support and for providing laboratory facilities to carry out this research.

Funding

This study was funded by the integrated research grants of EIAR-NABRC (Ethiopian Institute of Agricultural Research-National Agricultural Biotechnology Research Center) and Addis Ababa University of the Ethiopian Minister of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Contributions

AM has contributed to the study material collection and generation of row data under laboratory conditions. All authors have equally participated in the design of the study, data analysis, and interpretation, drafting of the manuscript, and revising and commenting on the manuscript critically for final submission.

Corresponding authors

Correspondence to Abebaw Misganaw or Tilahun Mekonnen.

Ethics declarations

Conflict of interest

The authors disclose that they do not have any competing interests.

Ethical approval

We check that all named authors have read and approved the paper and that no other individuals who meet the criteria for authorship but are not listed have done so. We also affirm that the manuscript's authorship order has been approved by all of us.

Ethical responsibility

The data in this manuscript is unique to us and has never been published before. Other people's work and words have been acknowledged appropriately.

Human or animal rights

There are no human or animal participants in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misganaw, A., Feyissa, T., Mekonnen, T. et al. Genetic diversity analysis of sorghum genotypes for sustainable genetic resource conservation and its implication for breeding program in ethiopia. Genet Resour Crop Evol 70, 1831–1852 (2023). https://doi.org/10.1007/s10722-023-01539-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01539-2

Keywords

Navigation