Skip to main content
Log in

Crooked surfaces and anti-de Sitter geometry

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Crooked planes were defined by Drumm to bound fundamental polyhedra in Minkowski space for Margulis spacetimes. They were extended by Frances to closed polyhedral surfaces in the conformal compactification of Minkowski space (Einstein space) which we call crooked surfaces. The conformal model of anti-de Sitter space is the interior of the quotient of Einstein space by an involution fixing an Einstein plane. The purpose of this note is to show that the crooked planes defined in anti-de Sitter space recently by Danciger-Guéritaud-Kassel lift to restrictions of crooked surfaces in Einstein space which are adapted under the involution of Einstein space defining anti-de Sitter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbot, T., Bonsante, F., Danciger, J., Goldman, W., Guéritaud, F., Kassel, F., Krasnov, K., Schlenker, J.-M., Zeghib, A.: Some open questions on anti-de Sitter geometry. arXiv:1205.6103

  2. Barbot, T., Charette, V., Drumm, T., Goldman, W., Melnick, K.: A primer on the (2+1)-Einstein universe. In: Alekseevsky, D., Baum, H. (eds.) Recent Developments in Pseudo-Riemannian Geometry. Erwin Schrödinger Lectures in Mathematics and Physics, European Mathematical Society, pp. 179–230 (2008). math.DG.0706.3055

  3. Burelle, J.-P., Charette, V., Drumm, T., Goldman, W.: Crooked halfspaces. Enseignement Mathématique 60(1), 43–78 (2014). math.DG.1211.4177

  4. Charette, V., Francoeur, D., Lareau-Dussault, R.: Fundamental polyhedra in the Einstein universe. In: Topology and its Applications, vol. 174, pp. 62–80 (2014). math.DG.1307.6531

  5. Danciger, J.: Geometric transitions from hyperbolic to \({{\sf {AdS}}}\) geometry. Doctoral thesis, Stanford University (2011)

  6. Danciger, J., Guéritaud, F., Kassel, F.: Fundamental domains for free groups acting on anti-de Sitter 3-space. math.GT.1410.5804

  7. De Concini, C., Procesi, C.: Complete symmetric varieties. In: Gherardelli, Francesco (ed.) Invariant Theory (Montecatini, 1982). Lecture Notes in Mathematics, 996, p. 144. Springer, Berlin (1983)

    Google Scholar 

  8. Drumm, T.: Fundamental polyhedra for Margulis space-times. Topology 31(4), 677–683 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Drumm, T., Goldman, W.: The geometry of crooked planes. Topology 38(2), 323–351 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eschenburg, J.- H.: Lecture Notes on Symmetric Spaces. http://www.math.uni-augsburg.de/eschenbu/symspace

  11. Frances, C.: Géometrie et dynamique lorentziennes conformes. Thèse, E.N.S. Lyon (2002)

  12. Frances, C.: The conformal boundary of Margulis space-times. C. R. Math. Acad. Sci. Paris 336(9), 751–756 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goldman, W.: Projective Geometry on Manifolds. Notes from a Graduate Course at the University of Maryland (1988). http://www.math.umd.edu/wmg/pgom

  14. Goldman, W.: Complex Hyperbolic Geometry. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  15. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, a Series of Monographs and Textbooks, vol. 80. Academic Press, New York (1978)

    Google Scholar 

  16. Lareau-Dussault, R.: Les surfaces croches de l’universe d’Einstein, mémoire. Université de Sherbrooke (2012)

  17. Mess, G.: Lorentz spacetimes of constant curvature. Geom. Dedic. 126, 345 (2007)

    Article  Google Scholar 

  18. O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity. Pure and Applied Mathematics, vol. 103. Academic Press, San Diego (1983)

    Google Scholar 

  19. Rossi Salvemini, C.: Espace-temps globalement hyperboliques conformément plats. Thèse, Universit’e de Avignon (2012)

  20. Wolf, J.A.: Spaces of Constant Curvature, 6th edn. AMS Chelsea Publishing, Providence (2011). xviii+424

    MATH  Google Scholar 

Download references

Acknowledgments

I thank Jeff Danciger, François Guéritaud, and Fanny Kassel for many helpful conversations, and especially for sharing their results [6] with me. This work clearly owes to Todd Drumm and Charles Frances for introducing crooked planes and crooked surfaces. In addition, I especially thank Virginie Charette, Dominik Francoeur, and Rosemonde Lareau-Dussault, for many illuminating conversations on this subject, and in particular for sharing their results [4, 16] with me. These conversations occurred at the special trimester Geometry and Analysis of Surface Group Representations at Institut Henri Poincaré in Paris (January–March 2012), the GEAR Network Retreat at the University of Illinois in August 2012, the workshop Higher Teichmüller-Thurston Theory at Centre de Recherches Mathématiques in Montréal in October 2012, and the workshop on Exotic Geometric Structures and the International Center for Experiment and Research in Mathematics at Brown University in September 2013. I am indebted to these venues for their hospitality, and in particular for the opportunity to discuss these mathematical ideas. I am grateful to Jeff Danciger, Jean-Philippe Burelle and Greg Laun for reading preliminary versions of this manuscript and suggesting numerous improvements and corrections. I thank Thierry Barbot for many illuminating discussions about Lorentzian geometry. Finally I would like to thank the anonymous referees for numerous helpful comments and suggestions. I dedicate this paper to the memory of Professor Sho Kobayashi, a good friend who taught me much Differential Geometry while I was a graduate student at the University of California at Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Goldman.

Additional information

Dedicated to the memory of Shoshichi Kobayashi.

We are grateful to the National Science Foundation for partial support, and in particular the GEAR Network, part of the NSF program “Research Networks in the Mathematical Sciences”.

Appendix: Einstein hyperspheres bounding \({{\mathsf {AdS}}}^3\)

Appendix: Einstein hyperspheres bounding \({{\mathsf {AdS}}}^3\)

Because \(\mathsf {PSL}(2,{{\mathbb {R}}})\) is homeomorphic to an open solid torus \(D^2\times S^1\), its boundary is a \(2\)-torus \(S^1\times S^1\).

Since this theory seems not to be so well-known, we begin with a brief exposition of singular projective transformations. This is a simple case of the theory of wonderful compactifications developed by de Concini-Procesi [7].

A natural compactification of the group \(\mathsf {PGL}(2,{{\mathbb {R}}})\) is the projective space \({{\mathbb {R}}}\mathsf {P}^3\) obtained by projectivizing the embedding

$$\begin{aligned} \mathsf {GL}(2,{{\mathbb {R}}})\hookrightarrow \mathsf {Mat}_2({{\mathbb {R}}}){\setminus }\{ {\mathbf {0}}\} \end{aligned}$$

of the group of invertible \(2\times 2\) real matrices in the set of nonzero \(2\times 2\) real matrices. The induced map

$$\begin{aligned} \mathsf {PGL}(2,{{\mathbb {R}}})\hookrightarrow {{\mathbb {R}}}\mathsf {P}^3\end{aligned}$$

embeds \(\mathsf {PGL}(2,{{\mathbb {R}}})\) as an open dense subset of \({{\mathbb {R}}}\mathsf {P}^3\). The complement \({{\mathbb {R}}}\mathsf {P}^3{\setminus }\mathsf {PGL}(2,{{\mathbb {R}}})\) consists of singular projective transformations of \({{\mathbb {R}}}\mathsf {P}^1\). It naturally identifies with \({{\mathbb {R}}}\mathsf {P}^1\times {{\mathbb {R}}}\mathsf {P}^1\) and is homeomorphic to a torus.

A point in the the complement \({{\mathbb {R}}}\mathsf {P}^3{\setminus }\mathsf {PGL}(2,{{\mathbb {R}}})\) is the projective equivalence class of a \(2\times 2\) real matrix \(M\) which is nonzero but singular. In other words, \(M\) is a \(2\times 2\) matrix of rank \(1\). The corresponding linear endomorphism of \({{\mathbb {R}}}^2\) has a \(1\)-dimensional kernel and a \(1\)-dimensional range, which may coincide. This pair of lines in \({{\mathbb {R}}}^2\) determines a point

$$\begin{aligned} \big (\mathsf {Kernel}(M), \mathsf {Image}(M)\big )\ \in \ {{\mathbb {R}}}\mathsf {P}^1\times {{\mathbb {R}}}\mathsf {P}^1. \end{aligned}$$

Two matrices giving the same pair are projectively equivalent. The corresponding singular projective transformation is only defined on \({{\mathbb {R}}}\mathsf {P}^1{\setminus } \{\mathsf {Kernel}(M)\}\) where it is the constant mapping

$$\begin{aligned} {{\mathbb {R}}}\mathsf {P}^1{\setminus } \{\mathsf {Kernel}(M)\} \longrightarrow \{\mathsf {Image}(M)\}. \end{aligned}$$

Here are two basic examples. The one-parameter semigroup of projective transformations defined by the diagonal matrix

converges, as \(t\longrightarrow + \infty \), to the singular projective transformation defined by the diagonal matrix

which corresponds to the ordered pair

$$\begin{aligned} \big ([0:1],[1:0] \big ) \ \in \ {{\mathbb {R}}}\mathsf {P}^1\times {{\mathbb {R}}}\mathsf {P}^1. \end{aligned}$$

Likewise the one-parameter semigroup of projective transformations

converges, as \(t\longrightarrow + \infty \), to the singular projective transformation defined by

which corresponds to the ordered pair

$$\begin{aligned} \big ([1:0],[1:0]) \big ) \ \in \ {{\mathbb {R}}}\mathsf {P}^1\times {{\mathbb {R}}}\mathsf {P}^1. \end{aligned}$$

For more details see [13] and the references cited there.

The group \(\mathsf {PSL}(2,{{\mathbb {R}}})\) is one component of \(\mathsf {PGL}(2,{{\mathbb {R}}})\); the other component corresponds to matrices with negative determinant. Denote the closure of \(\mathsf {PSL}(2,{{\mathbb {R}}})\subset {{\mathbb {R}}}\mathsf {P}^3\) by \(\overline{\mathsf {PSL}(2,{{\mathbb {R}}})}\). Since the inclusion

$$\begin{aligned} \mathsf {PSL}(2,{{\mathbb {R}}})\hookrightarrow \overline{\mathsf {PSL}(2,{{\mathbb {R}}})} \end{aligned}$$

is a homotopy-equivalence, the compactification of \(\mathsf {PSL}(2,{{\mathbb {R}}})\) lifts to a compactification of the double covering

$$\begin{aligned} {{\mathsf {SL}}}(2,{{\mathbb {R}}})\longrightarrow \mathsf {PSL}(2,{{\mathbb {R}}}). \end{aligned}$$

Points on the boundary \(\partial {{\mathsf {SL}}}(2,{{\mathbb {R}}})\approx S^1\times S^1\) can be geometrically interpreted as follows. Choose an orientation \(O_{{{\mathbb {R}}}^2}\) on \({{\mathbb {R}}}^2\). The double covering \(\widehat{{{\mathbb {R}}}\mathsf {P}^1}\) of \({{\mathbb {R}}}\mathsf {P}^1\) consists of oriented lines, that is, pairs \((\ell ,O_\ell )\), where \(\ell \in {{\mathbb {R}}}\mathsf {P}^1\) is a line in \({{\mathbb {R}}}^2\) and \(O_\ell \) is an orientation on \(\ell \). Then the boundary \(\partial {{\mathsf {SL}}}(2,{{\mathbb {R}}})\) consists of ordered pairs of oriented lines

$$\begin{aligned} \big ( (\ell _1,O_1),\ (\ell _2,O_2)\big ) \ \in \ \widehat{{{\mathbb {R}}}\mathsf {P}^1}\times \widehat{{{\mathbb {R}}}\mathsf {P}^1} \end{aligned}$$

such that:

  • \(O_1 = O_2\) if \(\ell _1 = \ell _2\);

  • \(O_{{{\mathbb {R}}}^2} = O_1 \oplus O_2 \) with respect to the decomposition \({{\mathbb {R}}}^2 = \ell _1 \oplus \ell _2\) if \(\ell _1 \ne \ell _2\).

Alternatively, the double covering

$$\begin{aligned} \partial {{\mathsf {SL}}}(2,{{\mathbb {R}}})\longrightarrow \partial \mathsf {PSL}(2,{{\mathbb {R}}})\approx {{\mathbb {R}}}\mathsf {P}^1\times {{\mathbb {R}}}\mathsf {P}^1\end{aligned}$$

is defined by the homomorphism \(\pi _1({{\mathbb {R}}}\mathsf {P}^1\times {{\mathbb {R}}}\mathsf {P}^1) \longrightarrow {{\mathbb {Z}}}/2\) which is nontrivial on each Cartesian factor.

These two projections correspond to the rulings of \(\partial \widehat{{{\mathsf {AdS}}}}\), as described in Sect. 3.2.4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldman, W.M. Crooked surfaces and anti-de Sitter geometry. Geom Dedicata 175, 159–187 (2015). https://doi.org/10.1007/s10711-014-0034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-014-0034-8

Keywords

Mathematics Subject Classification (2000)

Navigation