Skip to main content
Log in

Lorentz spacetimes of constant curvature

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

This paper is unpublished work of Geoffrey Mess written in 1990, which gives a classification of flat and anti-de Sitter domains of dependence in 2+1 dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirsch M.W. (1953). Immersion of Manifolds. Trans. Am. Math. Soc. 93: 242–276

    Article  MathSciNet  Google Scholar 

  2. Witten E. (1989). 2+1 dimensional gravity as an exactly soluble system. Nuclear Phys. B 311: 46

    Article  MathSciNet  Google Scholar 

  3. Labourie F. (1992). Surfaces convexes dans l’espace hyperbolique et \({\mathbb{CP}}^1\)-structures. J. London Math. Soc. (2) 45(3): 549–565

    Article  MATH  MathSciNet  Google Scholar 

  4. Carrière Y. (1989). Autour de la conjecture de L. Markus sur les variétés affines. Invent. Math. 95(3): 615–628

    Article  MATH  Google Scholar 

  5. Witten, E.: On the structure of the topological phase of two dimensional quantum gravity. Preprint IASSNS-HEP-89/66, Institute for Advanced Study

  6. Witten E. (1989). Topology-changing amplitudes in (2+1)-dimensional gravity. Nuclear Phys. B 323(1): 113–140

    Article  MathSciNet  Google Scholar 

  7. Goldman W.M. (1988). Topological components of spaces of representations. Invent. Math. 93(3): 557–607

    Article  MATH  MathSciNet  Google Scholar 

  8. Milnor J. (1958). On the existence of a connection with curvature zero. Comment. Math. Helv. 32: 215–223

    Article  MATH  MathSciNet  Google Scholar 

  9. Wood J.W. (1971). Bundles with totally disconnected structure group. Comment. Math. Helv. 46: 257–273

    Article  MATH  MathSciNet  Google Scholar 

  10. Benzécri, J.-P.: Variétés localement affines. In: Semin. de Topologie et de Geometrie differentielle Ch. Ehresmann 2 (1958/60), No.7, 1961

  11. Benzécri J.-P. (1960). Sur les variétés localement affines et localement projectives. Bull. Soc. Math. France 88: 229–332

    MATH  MathSciNet  Google Scholar 

  12. Scott P. (1978). Subgroups of surface groups are almost geometric. J. London Math. Soc. (2) 17(3): 555–565

    Article  MATH  MathSciNet  Google Scholar 

  13. Beardon A.F. (1983). The Geometry of Discrete Groups, Graduate Texts in Mathematics, vol. 91. Springer-Verlag, New York

    Google Scholar 

  14. Matsumoto S. (1987). Some remarks on foliated S 1 bundles. Invent. Math. 90(2): 343–358

    Article  MATH  MathSciNet  Google Scholar 

  15. Milnor J. (1977). On fundamental groups of complete affinely flat manifolds. Adv. Math. 25(2): 178–187

    Article  MATH  MathSciNet  Google Scholar 

  16. Thurston, W.P.: The Geometry and Topology of Three-manifolds. Lecture notes, Princeton University (1978)

  17. Lok, L.: Deformations of locally homogeneous spaces and Kleinian groups. Thesis, Columbia University (1984)

  18. Canary, R.D., Epstein, D.B.A., Green, P.: Notes on Notes of Thurston, Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, (pp. 3–92). Cambridge Univ. Press, Cambridge (1987)

  19. Goldman, W.M.: Geometric structures on manifolds and varieties of representations. In: Geometry of Group Representations (Boulder, CO, 1987), volume 74 of Contemp. Math., pages 169–198. Amer. Math. Soc., Providence, RI (1988)

  20. Geroch, R., Horowitz, G.T.: Global structure of spacetimes. In: General Relativity, pp. 212–293. Cambridge University Press, Cambridge (1979)

  21. Casson, A.J., Bleiler, S.A.: Automorphisms of Surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, vol. 9. Cambridge University Press, Cambridge (1988)

  22. Epstein, D.B.A., Marden, A.: Convex Hulls in Hyperbolic Space, a Theorem of Sullivan, and Measured Pleated Surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, pp. 113–253. Cambridge Univ. Press, Cambridge (1987)

  23. Goldman W.M. (1984). The symplectic nature of fundamental groups of surfaces. Adv. Math. 54(2): 200–225

    Article  MATH  Google Scholar 

  24. Moncrief V. (1989). Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian system over Teichmüller space. J. Math. Phys. 30(12): 2907–2914

    Article  MATH  MathSciNet  Google Scholar 

  25. Kulkarni, R.S., Pinkall, U.: Uniformization of Geometric Structures with Applications to Conformal Geometry, Differential geometry, Peñí scola 1985, Lecture Notes in Math., vol. 1209, pp. 190–209. Springer, Berlin (1986)

  26. Goldman W.M. (1987). Projective structures with Fuchsian holonomy. J. Differ. Geom. 25(3): 297–326

    MATH  Google Scholar 

  27. Apanasov, B.N.: Nontriviality of Teichmüller Space for Kleinian Group in space, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) (Princeton, N.J.), Ann. of Math. Stud., vol. 97, pp. 21–31. Princeton Univ. Press (1981)

  28. Gunning, R.C.: Lectures on Riemann Surfaces, Princeton Mathematical Notes. Princeton University Press, Princeton, NJ (1966)

  29. Gallo D.M. (1989). Prescribed holonomy for projective structures on compact surfaces. Bull. Am. Math. Soc. (N.S.) 20(1): 31–34

    Article  MATH  MathSciNet  Google Scholar 

  30. Hejhal, D.A.: Monodromy Groups and Linearly Polymorphic Functions, Discontinuous groups and Riemann Surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), Ann. of Math. Studies, No. 79, pp. 247–261. Princeton Univ. Press, Princeton, NJ (1974)

  31. Hejhal D.A. (1975). Monodromy groups and linearly polymorphic functions. Acta Math. 135(1): 1–55

    Article  MATH  MathSciNet  Google Scholar 

  32. Gallo, D.M., Goldman, W.M., Porter, R.M.: Projective structures with monodromy in PSL(2,\({\mathbb{R}})\) (to appear)

  33. Tan, S.P.: Representations of Surface Groups into PSL 2(\({\mathbb{R}})\) and Geometric Structures. Thesis, UCLA (1988)

  34. Magnus, W.: Noneuclidean Tesselations and their Groups. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], Pure and Applied Mathematics, vol. 61. New York-London (1974)

  35. Kuiper N.H. (1949). On conformally-flat spaces in the large. Ann. Math. 50(2): 916–924

    MathSciNet  Google Scholar 

  36. Kerckhoff S.P. (1983). The Nielsen realization problem. Ann. Math. (2) 117: 235–265

    Article  MathSciNet  Google Scholar 

  37. Thurston, W.P.: Earthquakes in Two-dimensional Hyperbolic Geometry. Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 112, pp. 91–112. Cambridge Univ. Press, Cambridge (1986)

  38. Rourke, C.: Convex Ruled Surfaces, Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, pp. 255–272. Cambridge Univ. Press, Cambridge (1987)

  39. Sullivan, D.: Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur S 1, Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, pp. 196–214. Springer, Berlin (1981)

  40. Margulis G.A. (1983). Free completely discontinuous groups of affine transformations. Dokl. Akad. Nauk SSSR 272(4): 785–788

    MathSciNet  Google Scholar 

  41. Margulis, G.A.: Complete Affine Locally Flat Manifolds with a Free Fundamental Group. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 134, pp. 190–205, (1984) Automorphic functions and number theory, II

  42. Drumm T.A., Goldman W.M. (1990). Complete flat Lorentz 3-manifolds with free fundamental group. Internat. J. Math. 1(2): 149–161

    Article  MATH  MathSciNet  Google Scholar 

  43. Drumm T.A. (1992). Fundamental polyhedra for Margulis space-times. Topology 31(4): 677–683

    Article  MATH  MathSciNet  Google Scholar 

  44. Goldman W.M., Kamishima Y. (1984). The fundamental group of a compact flat Lorentz space form is virtually polycyclic. J. Differ. Geom. 19(1): 233–240

    MATH  MathSciNet  Google Scholar 

  45. Fried D., Goldman W.M. (1983). Three-dimensional affine crystallographic groups. Adv. Math. 47(1): 1–49

    Article  MATH  MathSciNet  Google Scholar 

  46. Auslander L., Markus L. (1955). Holonomy of flat affinely connected manifolds. Ann. Math. 62(2): 139–151

    Article  MathSciNet  Google Scholar 

  47. Carrière Y., Dal’bo F. (1989). Généralisations du premier théorème de Bieberbach sur les groupes cristallographiques. Enseign. Math. (2) 35(3–4): 245–262

    MATH  MathSciNet  Google Scholar 

  48. Tits J. (1972). Free subgroups in linear groups. J. Algebra 20: 250–270

    Article  MATH  MathSciNet  Google Scholar 

  49. Dixon, J.D.: The Tits Alternative. Preprint, Carleton University

  50. Brooks R. (1981). The fundamental group and the spectrum of the Laplacian. Comment. Math. Helv. 56(4): 581–598

    Article  MATH  MathSciNet  Google Scholar 

  51. Kulkarni R.S., Raymond F. (1985). 3-dimensional Lorentz space-forms and Seifert fiber spaces. J. Differential Geom. 21(2): 231–268

    MATH  MathSciNet  Google Scholar 

  52. Goldman W.M. (1985). Nonstandard Lorentz space forms. J. Differential Geom. 21(2): 301–308

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Mess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mess, G. Lorentz spacetimes of constant curvature. Geom Dedicata 126, 3–45 (2007). https://doi.org/10.1007/s10711-007-9155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9155-7

Keywords

Mathematics Subject Classification (2000)

Navigation