Skip to main content
Log in

Coincidences between Calabi–Yau manifolds of Berglund–Hübsch type and Batyrev polytopes

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the phenomenon of the complete coincidence of key properties of Calabi–Yau manifolds realized as hypersurfaces in two different weighted projective spaces. More precisely, the first manifold in such a pair is realized as a hypersurface in a weighted projective space, and the second is realized as a hypersurface in an orbifold of another weighted projective space. The two manifolds in each pair have the same Hodge numbers and the same geometry on the complex structure moduli space and are also associated with the same \(N{=}2\) gauged linear sigma model. We explain these coincidences using the correspondence between Calabi–Yau manifolds and the Batyrev reflexive polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Berglund and T. Hübsch, “A generalized construction of mirror manifolds,” Nucl. Phys. B, 393, 377–391 (1993); arXiv:hep-th/9201014v1 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Berglund and T. Hübsch, “A generalized construction of Calabi–Yau models and mirror symmetry,” SciPost Phys., 4, 009 (2018); arXiv:1611.10300v3 [hep-th] (2016).

    Article  ADS  Google Scholar 

  3. H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, and M. Romo, “Two-sphere partition functions and Gromov–Witten invariants,” Commun. Math. Phys., 325, 1139–1170 (2014); arXiv:1208.6244v3 [hep-th] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Witten, “Phases of \(N{=}2\) theories in two-dimensions,” Nucl. Phys. B, 403, 159–222 (1993); arXiv:hep-th/9301042v3 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  5. K. Aleshkin and A. Belavin, “A new approach for computing the geometry of the moduli spaces for a Calabi–Yau manifold,” J. Phys. A: Math. Theor., 51, 055403 (2018); arXiv:1706.05342v4 [hep-th] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  6. K. Aleshkin and A. Belavin, “Special geometry on the 101 dimesional moduli space of the quintic threefold,” JHEP, 1803, 018 (2018); arXiv:1710.11609v3 [hep-th] (2017).

    Article  ADS  Google Scholar 

  7. K. Aleshkin and A. Belavin, “Exact computation of the special geometry for Calabi–Yau hypersurfaces of Fermat type,” JETP Lett., 108, 705–709 (2018); arXiv:1806.02772v2 [hep-th] (2018).

    Article  ADS  Google Scholar 

  8. K. Aleshkin, A. Belavin, and A. Litvinov, “Two-sphere partition functions and Kahler potentials on CY moduli spaces,” JETP Lett., 108, 710 (2018).

    Article  ADS  Google Scholar 

  9. K. Aleshkin, A. Belavin, and A. Litvinov, “JKLMR conjecture and Batyrev construction,” J. Stat. Mech., 2019, 034003 (2019); arXiv:1812.00478v3 [hep-th] (2018).

    Article  MathSciNet  Google Scholar 

  10. V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties,” J. Alg.Geom., 3, 493–535 (1994); arXiv:alg-geom/9310003v1 (1993).

    MathSciNet  MATH  Google Scholar 

  11. W. Lerche, C. Vafa, and N. P. Warner, “Chiral rings in \(N{=}2\) superconformal theories,” Nucl. Phys., 324, 427–474 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Candelas and X. C. de la Ossa, “Moduli space of Calabi–Yau manifolds,” Nucl. Phys. B, 355, 455–481 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Candelas, X. C. De La Ossa, P. S. Green, and L. Parkes, “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory,” Nucl. Phys. B, 359, 21–74 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Berglund, P. Candelas, X. C. de la Ossa, A. Font, T. Hübsch, D. Jančić, and F. Quevedo, “Periods for Calabi–Yau and Landau–Ginzburg vacua,” Nucl. Phys. B, 419, 352–403 (1994); arXiv:hep-th/9308005v2 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Chiodo, H. Iritani, and Y. Ruan, “Landau–Ginzburg/Calabi–Yau correspondence: Global mirror symmetry and Orlov equivalence,” Publ. IHES, 119, 127–216 (2013); arXiv:1201.0813v3 [math.AG] (2012).

    Article  MathSciNet  Google Scholar 

  16. K. Aleshkin and A. Belavin, “Special geometry on the moduli space for the two-moduli non-Fermat Calabi–Yau,” Phys. Lett. B, 776, 139–144 (2018); arXiv:1708.08362v2 [hep-th] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Bonelli, A. Sciarappa, A. Tanzini, and P. Vasko, “Vortex partition functions, wall crossing, and equivariant Gromov–Witten invariants,” Commun. Math. Phys., 333, 717–760 (2015); arXiv:1307.5997v2 [hep-th] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Gomis and S. Lee, “Exact Kähler potential from gauge theory and mirror symmetry,” JHEP, 1304, 019 (2013).

    Article  ADS  Google Scholar 

  19. N. Doroud and J. Gomis, “Gauge theory dynamics and Kähler potential for Calabi–Yau complex moduli,” JHEP, 1312, 099 (2013); arXiv:1309.2305v2 [hep-th] (2013).

    Article  ADS  Google Scholar 

  20. E. Gerchkovitz, J. Gomis, and Z. Komargodski, “Sphere partition functions and the Zamolodchikov metric,” JHEP, 1411, 001 (2014); arXiv:1405.7271v2 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  21. F. Benini and S. Cremonesi, “Partition functions of \(\mathcal{N}{=}(2,2)\) gauge theories on \(\text{S}^2\) and vortices,” Commun. Math. Phys., 334, 1483–1527 (2015); arXiv:1206.2356v3 [hep-th] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  22. N. Doroud, J. Gomis, B. Le Floch, and S. Lee, “Exact results in \(D{=}2\) supersymmetric gauge theories,” JHEP, 1305, 093 (2013); arXiv:1206.2606v4 [hep-th] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  23. K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow, “Chap. 7: Toric geometry for string theory,” in: Mirror Symmetry (Clay Math. Monogr., Vol. 1), Amer. Math. Soc., Providence, R. I. (2003), pp. 101–142; arXiv:hep-th/0002222v3 (2000).

    Google Scholar 

  24. A. A. Belavin and B. A. Eremin, “Partition functions of \(\mathcal{N}=(2,2)\) supersymmetric sigma models and special geometry on the moduli spaces of Calabi–Yau manifolds,” Theor. Math. Phys., 201, 1606–1613 (2019).

    Article  MathSciNet  Google Scholar 

  25. P. Candelas, X. C. de la Ossa, and S. Katz, “Mirror symmetry for Calabi–Yau hypersurfaces in weighted and extensions of Landau–Ginzburg theory,” Nucl. Phys. B, 450, 267–290 (1995); arXiv:hep-th/9412117v1 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Favero and T. L. Kelly, “Derived categories of BHK mirrors,” Adv. Math., 352, 943–980 (2019); arXiv:1602.05876v2 [math.AG] (2016).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to G. Koshevoy and A. Litvinov for the useful discussions.

Funding

This research was supported by a grant from the Russian Science Foundation (Project No. 18-12-00439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belavin.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belavin, A.A., Belakovskii, M.Y. Coincidences between Calabi–Yau manifolds of Berglund–Hübsch type and Batyrev polytopes. Theor Math Phys 205, 1439–1455 (2020). https://doi.org/10.1134/S0040577920110045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920110045

Keywords

Navigation