Skip to main content
Log in

Allelic variations of α-gliadin genes from species of Aegilops section Sitopsis and insights into evolution of α-gliadin multigene family among Triticum and Aegilops

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The α-gliadins account for 15–30 % of the total storage protein in wheat endosperm and play important roles in the dough extensibility and nutritional quality. On the other side, they act as a main source of toxic peptides triggering celiac disease. In this study, 37 α-gliadins were isolated from three species of Aegilops section Sitopsis. Sequence similarity and phylogenetic analyses revealed novel allelic variation at Gli-2 loci of species of Sitopsis and regular organization of motifs in their repetitive domain. Based on the comprehensive analyses of a large number of known sequences of bread wheat and its diploid genome progenitors, the distributions of four T cell epitopes and length variations of two polyglutamine domains are analyzed. Additionally, according to the organization of repeat motifs, we classified the α-gliadins of Triticum and Aegilops into eight types. Their most recent common ancestor and putative divergence patterns were further considered. This study provides new insights into the allelic variations of α-gliadins in Aegilops section Sitopsis, as well as evolution of α-gliadin multigene family among Triticum and Aegilops species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson OD, Greene FC (1997) The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59–65

    Article  CAS  Google Scholar 

  • Anderson OD, Litts JC, Greene FC (1997) The α-gliadin gene family. I. Characterization of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and southern analysis of the gene family. Theor Appl Genet 95:50–58

    Article  CAS  Google Scholar 

  • Chen X, Li W, Wei YM, Chen GY, Zheng YL (2008) Cloning and molecular characterization of nine alpha-gliadin genes from Triticum turgidum ssp. paleocolchicum. J Biol Sci 8:542–548

    Article  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Herberd NP, Bartels D, Thompson RD (1985) Analysis of the gliadin multigene loci in bread wheat using nullisomic–tetrasomic lines. Mol Gen Genet 198:234–242

    Article  Google Scholar 

  • Huang Z, Long H, Wei YM, Qi PF, Yan ZH, Zheng YL (2010) Characterization and classification of λ-gliadin multigene sequences from section Sitopsis. Cereal Res Commun 38:1–14

    Article  Google Scholar 

  • Kerby K, Kuspira J (1988) Cytological evidence bearing on the origin of the B genome in polyploid wheats. Genome 30:36–43

    Article  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Li G, Zhang T, Wei P, Jia J, Yang Z (2010) Sequence analysis of α-gliadin genes from Aegilops tauschii native to China. Asian J Agric Sci 2:128–135

    Google Scholar 

  • Li J, Wang S-L, Cao M, Lv DW, Subburaj S, Li XH, Zeller FJ, Hsam SLK, Yan YM (2013) Cloning, expression, and evolutionary analysis of α-gliadin genes from and genomes. J Appl Genet 54:157–167

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xin R, Zhang D, Li S (2014) Molecular characterization of α-gliadin genes from common wheat cultivar Zhengmai 004 and their role in quality and celiac disease. Crop J 2:10–21

    Article  Google Scholar 

  • Ma W, Appels R, Bekes F, Larroque O, Morell MK, Gale KR (2005) Genetic characterisation of dough rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interactions. Theor Appl Genet 111:410–422

    Article  CAS  PubMed  Google Scholar 

  • Ma ZC, Wei YM, Yan ZH, Zheng YL (2007) Characterization of a-gliadin genes from diploid wheats and the comparative analysis with those from polyploid wheats. Russ J Genet 43:1286–1293

    Article  CAS  Google Scholar 

  • Marcussen T, Sandve SR., Heier L, Spannagl M, Pfeifer M, The International Wheat Genome Sequencing Consortium, Jakobsen KS, Wulff BBH, Steuernagel B, Klaus FXM, Olsen O-A (2014) Ancient hybridizations among the ancestral genomes of bread wheat. Science 345:6194

  • McManus R, Kelleher D (2003) Celiac disease—the villain unmasked? N Engl J Med 348:2573–2574

    Article  PubMed  Google Scholar 

  • Metakovsky EV (1991) Gliadin allele identification in common wheat II. Catalogue of gliadin alleles in common wheat. J Genet Breed 45:325–344

    Google Scholar 

  • Metakovsky EV, Novoselskaya AY, Sozinov AA (1984) Genetic analysis of gliadin components in winter wheat using two dimensional polyacrylamide gel electrophoresis. Theor Appl Genet 69:31–37

    Article  CAS  PubMed  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant. DNA Nucl Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Okita TW, Cheesbrough V, Reeves CD (1985) Evolution and heterogeneity of the alpha/beta-type and gamma-type gliadins DNA sequences. J Biol Chem 260:8203–8213

    CAS  PubMed  Google Scholar 

  • Payne PI, Nightingale MA, Krattiger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric 40:51–65

    Article  CAS  Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82

    Article  CAS  PubMed  Google Scholar 

  • Qi PF, Chen Q, Ouellet T, Wang Z, Le CX, Wei YM, Lan XJ, Zheng YL (2013) The molecular diversity of α-gliadin genes in the tribe Triticeae. Genetica 141:303–310

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Molberg ParrotI, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac disease. Science 297:2275–2279

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Tatham AS, Lazzeri P (1997) Biotechnology of wheat quality. J Sci Food Agric 73:397–406

    Article  CAS  Google Scholar 

  • Sumner-Smith M, Rafalski JA, Sugiyama T, Stoll M, Soell D (1983) Conservation and variability of wheat alpha/beta-gliadin genes. J Nucl Acids Res 11:3905–3916

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony method. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Herpen TW, Goryunova SV, van der Schoot J, Mitreva M, Salentijn E, Vorst O, Schenk MF, van Veelen PA, Koning F, van Soest LJ, Vosman B, Bosch D, Hamer RJ, Gilissen LJ, Smulders MJ (2006) Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Wang C, Wang K, Wang S, Li X, Zhang Z, Ma W, Yan Y (2010) Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.). Theor Appl Genet 121:1239–1251

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Luo G, Liu D, Wang D, Yang W, Sun J, Zhang A, Zhan K (2015) Genome-, transcriptome- and proteome-wide analyses of the gliadin gene families in Triticum urartu. PLoS One 10:e0131559

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Long or You-Liang Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Long, H., Wei, YM. et al. Allelic variations of α-gliadin genes from species of Aegilops section Sitopsis and insights into evolution of α-gliadin multigene family among Triticum and Aegilops . Genetica 144, 213–222 (2016). https://doi.org/10.1007/s10709-016-9891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-016-9891-4

Keywords

Navigation