Skip to main content
Log in

Genetic architecture underlying host choice differentiation in the sympatric host races of Lochmaea capreae leaf beetles

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Speciation in herbivorous insects has received considerable attention during the last few decades. Much of this group’s diversity originates from adaptive population divergence onto different host plants, which often involves the evolution of specialized patterns of host choice behaviour. Differences in host choice often translates directly into divergence in mating sites, and therefore positive assortative mating will be created which will act as a strong barrier to gene flow. In this study, we first explored whether host choice is a genetically determined trait in the sympatric willow and birch host races of the leaf feeding beetle Lochmaea capreae, or whether larval experience influences adult host choice. Once we had established that host choice is a genetically based trait we determined its genetic architecture. To achieve this, we employed a reciprocal transplant design in which offspring from pure willow and birch cross-types, F1, F2 and backcrosses were raised on each host plant and their preference was determined upon reaching adulthood. We then applied joint-scaling analysis to uncover the genetic architecture of host preference. Our results suggest that rearing host does not have a pronounced effect on adult’s host choice; rather the segregation pattern implies the existence of genetic loci affecting host choice in these host races. The joint-scaling analysis revealed that population differences in host choice are mainly influenced by the contribution of additive genetic effects and also maternally inherited cytoplasmic effects. We explore the implications of our findings for evolutionary dynamics of sympatric host race formation and speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barton K (2014) Package ‘MuMIn’: multi-model inference. R package version 1.9. 13

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version 1.0-5

  • Berlocher SH, Feder JL (2002) Sympatric speciation in phytophagous insects: Moving beyond controversy? Annu Rev Entomol 47:773–815

    Article  CAS  PubMed  Google Scholar 

  • Bieri J, Kawecki TJ (2003) Genetic architecture of differences between populations of cowpea weevil (Callosobruchus maculatus) evolved in the same environment. Evolution 57:274–287

    Article  PubMed  Google Scholar 

  • Burton RS, Rawson PD, Edmands S (1999) Genetic architecture of physiological phenotypes: empirical evidence for coadapted gene complexes. Am Zool 39:451–462

    Article  CAS  Google Scholar 

  • Bush GL (1969a) Mating behavior, host specificity, and the ecological significance of sibling species in frugivorous flies of the genus Rhagoletis (Diptera-Tephritidae). Am Nat 103:669–672

    Article  Google Scholar 

  • Bush GL (1969b) Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23:237–251

    Article  Google Scholar 

  • Caillaud M, Via S (2012) Quantitative genetics of feeding behavior in two ecological races of the pea aphid, Acyrthosiphon pisum. Heredity 108:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtney SP, Chen GK, Gardner A (1989) A general model for individual host selection. Oikos 55:55–65

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Craig TP, Horner JD, Itami JK (2001) Genetics, experience, and host plant preference in Eurosta solidaginis: implications for host shift and speciation. Evolution 55:773–782

    Article  CAS  PubMed  Google Scholar 

  • Cruzan MB, Arnold ML (1999) Consequences of cytonuclear epistasis and assortative mating for the genetic structure of hybrid populations. Heredity 82:36–45

    Article  Google Scholar 

  • Dambroski HR, Linn C, Berlocher SH, Forbes AA, Roelofs W, Feder JL (2005) The genetic basis for fruit odor discrimination in Rhagoletis flies and its significance for sympatric host shifts. Evolution 59:1953–1964

    Article  CAS  PubMed  Google Scholar 

  • Demuth JP, Wade MJ (2007) Population differentiation in the beetle Tribolium castaneum. I. Genetic architecture. Evolution 61:494–509

    Article  PubMed  Google Scholar 

  • Desjardins CA, Perfectti F, Bartos JD, Enders LS, Werren JH (2010) The genetic basis of interspecies host preference differences in the model parasitoid Nasonia. Heredity 104:270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357

    Article  CAS  PubMed  Google Scholar 

  • Drès M, Mallet J (2002) Host races in plant–feeding insects and their importance in sympatric speciation. Philos Trans R Soc B 357:471–492

    Article  Google Scholar 

  • Emelianov I, Mallet J, Baltensweiler W (1995) Genetic differentiation in Zeiraphera diniana (Lepidoptera: Tortricidae, the larch budmoth): polymorphism, host races or. Heredity 75:16–424

    Article  Google Scholar 

  • Erwin TL (1982) Tropical forests: their richness in Coleoptera and other arthropod species. Coleop Bull 36:74–75

    Google Scholar 

  • Falconer DS, Mackay TF, Frankham R (1996) Introduction to quantitative genetics (4th edn). Trends Genet 12:280

    Article  Google Scholar 

  • Feder JL, Forbes AA (2007) Habitat avoidance and speciation for phytophagous insect specialists. Funct Ecol 21:585–597

    Article  Google Scholar 

  • Forister ML (2005) Independent inheritance of preference and performance in hybrids between host races of Mitoura butterflies (Lepidoptera: Lycaenidae). Evolution 59:1149–1155

    Article  PubMed  Google Scholar 

  • Funk DJ (1998) Isolating a role for natural selection in speciation: host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52:1744–1759

    Article  Google Scholar 

  • Funk DJ (2012) Of “host forms” and host races: terminological issues in ecological speciation. Int J Ecol 2012:1–8

    Article  Google Scholar 

  • Funk DJ, Nosil P, Etges WJ (2006) Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc Natl Acad Sci USA 103:3209–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk DJ, Egan SP, Nosil P (2011) Isolation by adaptation in Neochlamisus leaf beetles: host-related selection promotes neutral genomic divergence. Mol Ecol 20:4671–4682

    Article  PubMed  Google Scholar 

  • Futuyma DJ, Mitter C (1996) Insect-plant interactions: the evolution of component communities. Philos Trans R Soc B 351:1361–1366

    Article  Google Scholar 

  • Futuyma DJ, Keese MC, Scheffer SJ (1993) Genetic constraints and the phylogeny of insect–plant associations: responses of Ophraella communa (Coleoptera: Chrysomelidae) to host plants of its congeners. Evolution 47:888–905

    Article  Google Scholar 

  • Gassmann A, Levy A, Tran T, Futuyma D (2006) Adaptations of an insect to a novel host plant: a phylogenetic approach. Funct Ecol 20:478–485

    Article  Google Scholar 

  • Groman J, Pellmyr O (2000) Rapid evolution and specialization following host colonization in a yucca moth. J Evol Biol 13:223–236

    Article  CAS  Google Scholar 

  • Hawthorne DJ, Via S (2001) Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–907

    Article  CAS  PubMed  Google Scholar 

  • Henniges-Janssen K, Reineke A, Heckel DG, Groot AT (2011) Complex inheritance of larval adaptation in Plutella xylostella to a novel host plant. Heredity 107:421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huettel MD, Bush GL (1972) The genetics of host selection and its bearing on sympatric speciation in Procecidochares (Diptera: Tephritidae). Entomol Exp Appl 15:465–480

    Article  Google Scholar 

  • Hutter CM, Rand DM (1995) Competition between mitochondrial haplotypes in distinct nuclear genetic environments: Drosophila pseudoobscura vs D. persimilis. Genetics 140:537–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Syst 21:243–273

    Article  Google Scholar 

  • Johnson PA, Hoppensteadt F, Smith JJ, Bush GL (1996) Conditions for sympatric speciation: a diploid model incorporating habitat fidelity and non-habitat assortative mating. Evol Ecol 10:187–205

    Article  Google Scholar 

  • Karpinski A, Haenniger S, Schöfl G, Heckel DG, Groot AT (2014) Host plant specialization in the generalist moth Heliothis virescens and the role of egg imprinting. Evol Ecol 28:1075–1093

    Article  Google Scholar 

  • Kreslavsky A, Mikheev A (1993) Gene gepghraphy of racial-differences in Lochmaeae capreae L (Coleoptera; Chrysomelidae), and the problem of sympatric speciation. Entomol Rev 72:50–58

    Google Scholar 

  • Linn C, Feder JL, Nojima S, Dambroski HR, Berlocher SH, Roelofs W (2003) Fruit odor discrimination and sympatric host race formation in Rhagoletis. Proc Natl Acad Sci USA 100:11490–11493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Mackay TF (2009) The genetic architecture of complex behaviors: lessons from Drosophila. Genetica 136:295–302

    Article  PubMed  Google Scholar 

  • Malausa T, Bethenod M-T, Bontemps A, Bourguet D, Cornuet J-M, Ponsard S (2005) Assortative mating in sympatric host races of the European corn borer. Science 308:258–260

    Article  CAS  PubMed  Google Scholar 

  • Mather K, Jinks JL (1971) Biometrical genetics. In: The study of continious variation. Cambridge University Press, Cambridge

  • Matsubayashi KW, Ohshima I, Nosil P (2010) Ecological speciation in phytophagous insects. Entomol Exp Appl 134:1–27

    Article  Google Scholar 

  • Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118

    Article  PubMed  PubMed Central  Google Scholar 

  • May RM, Beverton R (1990) How many species?[and discussion]. Philos Trans R Soc B 330:293–304

    Article  Google Scholar 

  • Meffert LM, Hicks SK, Regan JL (2002) Nonadditive genetic effects in animal behavior. Am Nat 160:S198–S213

    Article  PubMed  Google Scholar 

  • Nosil P (2007) Divergent host plant adaptation and reproductive isolation between ecotypes of Timema cristinae walking sticks. Am Nat 169:151–162

    Article  PubMed  Google Scholar 

  • Nygren G, Nylin S, Stefanescu C (2006) Genetics of host plant use and life history in the comma butterfly across Europe: varying modes of inheritance as a potential reproductive barrier. J Evol Biol 19:1882–1893

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim SJ, Gould F, Hopper KR (2012) The genetic architecture of a complex ecological trait: host plant use in the specialist moth, Heliothis subflexa. Evolution 66:3336–3351

    Article  PubMed  PubMed Central  Google Scholar 

  • Peccoud J, Simon J (2010) The pea aphid complex as a model of ecological speciation. Ecol Entomol 35:119–130

    Article  Google Scholar 

  • Rand DM, Clark AG, Kann LM (2001) Sexually antagonistic cytonuclear fitness interactions in Drosophila melanogaster. Genetics 159:173–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rice WR (1987) Speciation via habitat specialization: the evolution of reproductive isolation as a correlated character. Evol Ecol 1:301–314

    Article  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Article  Google Scholar 

  • Sackton TB, Haney RA, Rand DM (2003) Cytonuclear coadaptation in Drosophila: disruption of cytochrome c oxidase activity in backcross genotypes. Evolution 57:2315–2325

    Article  CAS  PubMed  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P (2011) Magic traits in speciation: ‘magic’ but not rare? Trends Ecol Evol 26:389–397

    Article  PubMed  Google Scholar 

  • Simpson GG (1955) Major features of evolution. Columbia University Press, New York

    Google Scholar 

  • Sobel MS, Grace FC, Watt LR, Schemske DW (2009) The biology of speciation. Evolution 64:295–315

    Article  PubMed  Google Scholar 

  • Soudi S, Reinhold K, Engqvist L (2015) Host associated divergence in sympatric host races of the leaf beetle Lochmaea capreae: implications for local adaptation and reproductive isolation. Biol J Linn Soc 116:169–182

    Article  Google Scholar 

  • Soudi S, Reinhold K, Engqvist L (2016) Ecologically dependent and intrinsic genetic signatures of postzygotic isolation between sympatric host races of the leaf beetle lochmaea capreae. Evolution. doi:10.1111/evo.12846

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria

  • Thompson JN (1988) Coevolution and alternative hypotheses on insect/plant interactions. Ecology 69:893–895

    Article  Google Scholar 

  • Via S (1999) Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution 53:1446–1457

    Article  Google Scholar 

  • Wcislo WT (1989) Behavioral environments and evolutionary change. Annu Rev Ecol Syst 20:137–169

    Article  Google Scholar 

  • Willett CS, Burton RS (2004) Evolution of interacting proteins in the mitochondrial electron transport system in a marine copepod. Mol Biol Evol 21:443–453

    Article  CAS  PubMed  Google Scholar 

  • Wolf JB, Wade MJ (2009) What are maternal effects (and what are they not)? Philos Trans R Soc B 364:1107–1115

    Article  Google Scholar 

  • Xue H-J, Magalhães S, Li W-Z, Yang X-K (2009) Reproductive barriers between two sympatric beetle species specialized on different host plants. J Evol Biol 22:2258–2266

    Article  PubMed  Google Scholar 

  • Yoder J, Clancey E, Des Roches S, Eastman J, Gentry L, Godsoe W, Hagey T, Jochimsen D, Oswald B, Robertson J (2010) Ecological opportunity and the origin of adaptive radiations. J Evol Biol 23:1581–1596

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their helpful comments on previous versions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaghayegh Soudi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soudi, S., Reinhold, K. & Engqvist, L. Genetic architecture underlying host choice differentiation in the sympatric host races of Lochmaea capreae leaf beetles. Genetica 144, 147–156 (2016). https://doi.org/10.1007/s10709-016-9885-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-016-9885-2

Keywords

Navigation