Skip to main content
Log in

The genetic architecture of complex behaviors: lessons from Drosophila

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Complex behaviors are affected by multiple interacting loci with individually small and environmentally sensitive effects. Understanding the genetic architecture of behavioral traits begins with identifying the genes regulating these traits, mapping the subset of genetically varying quantitative trait loci (QTLs) in natural populations, and pinpointing the molecular polymorphisms defining QTL alleles. Drosophila brings an impressive toolkit to the challenge of genetically dissecting complex traits: P transposable element mutagenesis to identify genes regulating these traits; artificial selection from natural populations to create extreme trait phenotypes; high resolution mapping to identify positional candidate genes corresponding to QTLs; linkage disequilibrium mapping to identify molecular polymorphism(s) that functionally define QTL alleles; and whole genome transcriptional profiling to postulate networks of interacting genes affecting complex traits. Studies in Drosophila have revealed large numbers of pleiotropic genes that interact epistatically to regulate behavioral traits, and that can have sex- and environment-specific effects. These observations offer valuable lessons for understanding the genetic basis of variation for complex behaviors in other organisms, including humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

QTL:

Quantitative trait locus

QTN:

Quantitative trait nucleotide

SNP:

Single nucleotide polymorphism

cM:

centi-Morgan

LD:

Linkage disequilibrium

GEI:

Genotype by environment interaction

References

  • Anholt RRH, Lyman RF, Mackay TFC (1996) Effects of single P element insertions on olfactory behavior in Drosophila melanogaster. Genetics 143:293–301

    PubMed  CAS  Google Scholar 

  • Anholt RRH, Dilda CL, Chang S, Fanara JJ, Kulkarni NH, Ganguly I et al (2003) The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome. Nat Genet 35:180–184. doi:10.1038/ng1240

    Article  PubMed  CAS  Google Scholar 

  • Baker BS, Taylor BJ, Hall JC (2001) Are complex behaviors specified by dedicated regulatory genes? Reasoning from Drosophila. Cell 105:13–24. doi:10.1016/S0092-8674(01)00293-8

    Article  PubMed  CAS  Google Scholar 

  • Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G et al (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167:761–781. doi:10.1534/genetics.104.026427

    Article  PubMed  CAS  Google Scholar 

  • Carbone MA, Jordan KW, Lyman RF, Harbison ST, Leips J, DeLuca M et al (2006) Phenotypic variation and natural selection at Catsup, a pleiotropic quantitative trait gene in Drosophila. Curr Biol 16:912–919. doi:10.1016/j.cub.2006.03.051

    Article  PubMed  CAS  Google Scholar 

  • De Luca M, Roshina NV, Geiger-Thornsberry GL, Lyman RF, Pasyukova EG, Mackay TFC (2003) Dopa-decarboxylase (Ddc) affects variation in Drosophila longevity. Nat Genet 34:429–433. doi:10.1038/ng1218

    Article  PubMed  Google Scholar 

  • Edwards AC, Rollmann SM, Morgan TJ, Mackay TFC (2006) Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genet 2(9):e154. doi:10.1371/journal.pgen.0020154

    Article  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4/e. Addison-Wesley, Harlow Essex, UK

    Google Scholar 

  • Fanara JJ, Robinson KO, Rollmann SM, Anholt RRH, Mackay TFC (2002) Vanaso is a quantitative trait locus for Drosophila olfactory behavior. Genetics 162:1321–1328

    PubMed  CAS  Google Scholar 

  • Fedorowicz GM, Fry JD, Anholt RRH, Mackay TFC (1998) Epistatic interactions between smell-impaired loci in Drosophila melanogaster. Genetics 148:1885–1891

    PubMed  CAS  Google Scholar 

  • Harbison ST, Yamamoto A, Fanara JJ, Norga KK, Mackay TFC (2004) Quantitative trait loci affecting starvation resistance in Drosophila melanogaster. Genetics 166:1807–1823. doi:10.1534/genetics.166.4.1807

    Article  PubMed  CAS  Google Scholar 

  • Jordan KW, Morgan TJ, Mackay TFC (2006) Quantitative trait loci for locomotor behavior in Drosophila melanogaster. Genetics 174:271–284. doi:10.1534/genetics.106.058099

    Article  PubMed  CAS  Google Scholar 

  • Jordan KW, Carbone MA, Yamamoto A, Morgan TJ, Mackay TFC (2007) Quantitative genomics of locomotor behavior in Drosophila melanogaster. Genome Biol 8:R172. doi:10.1186/gb-2007-8-8-r172

    Article  PubMed  Google Scholar 

  • Long AD, Langley CH (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res 9:720–731

    PubMed  CAS  Google Scholar 

  • Long AD, Mullaney SL, Mackay TFC, Langley CH (1996) Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics 144:1497–1518

    PubMed  CAS  Google Scholar 

  • Long AD, Lyman RF, Langley CH, Mackay TFC (1998) Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149:999–1017

    PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Sunderland, MA, USA

    Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339. doi:10.1146/annurev.genet.35.102401.090633

    Article  PubMed  CAS  Google Scholar 

  • Mackay TFC, Hackett JB, Lyman RF, Wayne ML, Anholt RRH (1996) Quantitative genetic variation of odor-guided behavior in a natural population of Drosophila melanogaster. Genetics 144:727–735

    PubMed  CAS  Google Scholar 

  • Mackay TFC, Heinsohn SL, Lyman RF, Moehring AJ, Morgan TJ, Rollmann SM (2005) Genetics and genomics of Drosophila mating behavior. Proc Natl Acad Sci USA 102:6622–6629. doi:10.1073/pnas.0501986102

    Article  PubMed  CAS  Google Scholar 

  • Mackay TFC, Roshina NV, Leips J, Pasyukova EG (2006) Complex genetic architecture of Drosophila longevity. In: Masaro EJ, Austad SN (eds) Handbook of the biology of aging, 6th edn. Elsevier, New York, pp 181–216

  • Moehring AJ, Mackay TFC (2004) The quantitative genetic basis of male mating behavior in Drosophila melanogaster. Genetics 167:1249–1263. doi:10.1534/genetics.103.024372

    Article  PubMed  CAS  Google Scholar 

  • Norga KK, Gurganus MC, Dilda CL, Yamamoto A, Lyman RF, Patel PH et al (2003) Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development. Curr Biol 13:1388–1397. doi:10.1016/S0960-9822(03)00546-3

    Article  PubMed  CAS  Google Scholar 

  • Nuzhdin SV, Pasyukova EG, Dilda CL, Mackay TFC (1997) Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci USA 94:9734–9739. doi:10.1073/pnas.94.18.9734

    Article  PubMed  CAS  Google Scholar 

  • Pasyukova EG, Vieira C, Mackay TFC (2000) Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster. Genetics 156:1129–1146

    PubMed  CAS  Google Scholar 

  • Robertson A (1967) The nature of quantitative genetic variation. In: Brink A (ed) Heritage from Mendel. University of Wisconsin, Madison, WI, USA, pp 265–280

    Google Scholar 

  • Rollmann SM, Magwire MM, Morgan TJ, Özsoy ED, Yamamoto A, Mackay TFC et al (2006) Pleiotropic fitness effects of the Tre1/Gr5a region in Drosophila. Nat Genet 38:824–829. doi:10.1038/ng1823

    Article  PubMed  CAS  Google Scholar 

  • Rollmann SM, Yamamoto A, Goossens T, Zwarts L, Callaerts P, Callaerts-Vegh Z et al (2007) The early neurodevelopmental gene Semaphorin 5c is essential for olfactory behavior in adult Drosophila. Genetics 176:947–956. doi:10.1534/genetics.106.069781

    Article  PubMed  CAS  Google Scholar 

  • Sambandan D, Yamamoto A, Fanara JJ, Mackay TFC, Anholt RRH (2006) Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics 174:1349–1363. doi:10.1534/genetics.106.060574

    Article  PubMed  CAS  Google Scholar 

  • Stathakis DG, Burton DY, McIvor WE, Krishnakumar S, Wright TR, O’Donnell JM (1999) The catecholamines up (Catsup) protein of Drosophila melanogaster functions as a negative regulator of tyrosine hydroxylase activity. Genetics 153:361–382

    PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445. doi:10.1073/pnas.1530509100

    Article  PubMed  CAS  Google Scholar 

  • Venken KJ, Bellen HJ (2005) Emerging technologies for gene manipulation in Drosophila melanogaster. Nat Rev Genet 6:167–178. doi:10.1038/nrg1553

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health grants R01 GM45146, R01 GM076083 and R01 AA016560 to Trudy Mackay, and R01 GM59469 to Robert Anholt. I thank my colleague, Robert Anholt, who co-directed much of this work and provides daily inspiration, and Hugo Bellen for the generous gift of the co-isogenic P{GT1} insert lines that were constructed in his laboratory. Many thanks also to the whole team who contributed to this work—you know who you are.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trudy F. C. Mackay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackay, T.F.C. The genetic architecture of complex behaviors: lessons from Drosophila . Genetica 136, 295–302 (2009). https://doi.org/10.1007/s10709-008-9310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9310-6

Keywords

Navigation