Skip to main content
Log in

LTR-retrotransposons and inter-retrotransposon amplified polymorphism (IRAP) analysis in Lilium species

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

LTR-retrotransposons are ubiquitous and highly abundant in plant genomes. Moreover, LTR-retrotransposons can often cause genome obesity in plants. Although Lilium species have been known carrying large genomes among flowering plants, reports on the LTR-retrotransposons in Lilium species are rather limited. We isolated a novel Ty3/gypsy-like retrotransposon, LIRE-del, and two Ty1/copia-like retrotransposons, a LIRE-del and an unclassified, from a fosmid clone of Lilium longiflorum. Decayed internal ORF sequences indicated that they were non-autonomous elements. IRAP protocol was developed based on the LTR sequences of the isolated LTR-retrotransposons. Fourteen primer combinations showed clear distinctive PCR amplification bands that were highly informative in the analysis of species relationship among Lilium species. The phylogenetic relationship based on the IRAP profile revealed some discordant with phylogenetic studies based on the ITS sequences of 45S ribosomal gene and matK gene variations in a few species. Thus, the phylogenetic relationship among Lilium species may need to be re-evaluated with other tools such as cross compatibility and selectively neutral genetic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and pant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    Article  PubMed  Google Scholar 

  • Ambrožová K, Mandáková BP, Neumann P, Leitch IL, Koblížková MJ, Lysak MA (2010) Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann Bot. doi:10.1093/aob/mcq2235

    PubMed Central  PubMed  Google Scholar 

  • Anderson NO, Younis A, Sun Y (2010) Inter-simple sequence repeats distinguish genetic differences in Easter lily ‘Nellie White; clonal ramets within and among bulb growers over years. J Am Soc Hortic Sci 135:445–455

    Google Scholar 

  • Asano Y (1989) Lilium L. In: Tsukumoto Y (ed) The great dictionary of horticulture, vol 5. Sykakukum, Tokyo, p 198–209 (In Japanese)

    Google Scholar 

  • Bailey CV, Carr TG, Harris SA, Hughes C (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol 29:435–455

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 95:467–590

    Article  Google Scholar 

  • Branco CJS, Vieira EA, Malone G, Kopp MM, Malone E, Bernardes A, Mistura CC, Carvalho FIF, Oliveira CA (2007) IRAP and REMAP assessment of genetic similarity in rice. J Appl Genet 48:107–113

    Article  PubMed  Google Scholar 

  • Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E et al (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721-1–1249721-7

    Article  Google Scholar 

  • Civáň P, Švec M, Hauptvogel P (2011) On the coevolution of transposable elements and plant genomes. J Bot. doi:10.1155/2011/893546

    Google Scholar 

  • Comber HF (1949) A new classification of genus Lilium. R Hort Soc Lily Year Book 13:86–105

    Google Scholar 

  • Devos KM (2010) Grass genome organization and evolution. Curr Opin Plant Biol 13:139–145

    Article  CAS  PubMed  Google Scholar 

  • Du YP, He HB, Wang ZX, Li S, Wei C, Yuan XN, Cui Q, Jia GX (2014) Molecular phylogeny and genetic variation in the genus Lilium native China based on the internal transcribed spacer sequences of nuclear ribosomal DNA. J Plant Res 127:249–263

    Article  PubMed  Google Scholar 

  • Fan F, Cui B, Zhang T, Ding G, Wen X (2014) LTR-retrotransposon activation, IRAP marker development and its potential in genetic diversity assessment of mason pine (Pinus massoniana). Tree Genet Genom 10:213–222

    Article  Google Scholar 

  • Fay M, Cowan R, Leitch IJ (2005) The effects of nuclear DNA content (C-value) on the quality and utility of AFLP fingerprints. Ann Bot 95:237–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feliner GN, Rosselló JA (2007) Better the devil you know? Guidelines for insights utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 44:911–919

    Article  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5(4):103–107

    Article  CAS  PubMed  Google Scholar 

  • Gao YD, Harris AJ, Zhou SD, He XJ (2013) Evolutionary events in Lilium (including Nomocharis, Liliaceae) are temporally correlated with progenies of the Q-T plateau and the Hengduan mountains. Mol Phylogenet Evol 68:443–460

    Article  PubMed  Google Scholar 

  • Ikinci N, Oberprieler C (2010) Genetic relationship among NE Turkish Lilium L. (Liliaceae) species based on a randomly amplified polymorphic DNA analysis. Plant Syst Evol 284:41–48

    Article  CAS  Google Scholar 

  • Jing R, Jhonson R, Seres A, Kiss G, Ambros MJ, Knox MR, Ellis THN, Flavell AJ (2007) Gene-based sequence diversity analysis of field pea (Pisum). Genetics 177:2263–2275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joseph JL, Sentry JW, Smyth DR (1990) Interspecific distribution of abundant DNA sequence in Lilium. J Mol Evol 30:146–154

    Article  CAS  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protoc 1:2478–2484

    Article  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA genotyping and fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JH, Kyung HY, Choi YS, Lee JK, Hiramatsu M, Okubo H (2006) Geographic distribution and habitat differentiation in diploid and triploid Lilium lancifolium of South Korea. J Fac Agr Kyushu Univ 51:239–243

    Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33:470–532

    Article  Google Scholar 

  • Lee SI, Kim NS (2014) Transposable elements and genome size in plants. Genomics Inform 12:87–97

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee SI, Park KC, Song YS, Son JH, Kwon SJ, Na JK, Kim JH, Kim NS (2011) Development of expressed sequence tag derived simple sequence repeats in the genus Lilium. Genes Genom 33:727–733

    Article  CAS  Google Scholar 

  • Lee SI, Park KC, Son JH, Hwang YJ, Lim KB, Song YS, Kim JH, Kim NS (2013) Isolation and characterization of novel Ty1-copia-like retrotransposons from lily. Genome 56:495–503

    Article  CAS  PubMed  Google Scholar 

  • Leeton PJL, Smyth DR (1993) An abundant LINE-like element amplified in the genome Lilium speciosum. Mol Gen Genet 237:97–104

    CAS  PubMed  Google Scholar 

  • Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF (2007) Punctuated genome size evolution in Liliaeae. J Evol Biol 20:2296–2308

    Article  CAS  PubMed  Google Scholar 

  • Lighty RW (1968) Evolutionary trends in Lilies, vol 30. Lily Year Book, Royal Hort Soc London, pp 40–44

    Google Scholar 

  • Lighty RW (1969) The lilies of Korea, vol 31. Lily Year Book, Royal Hort Soc London, pp 31–39

    Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Ann Rev Plant Biol 60:43–66

    Article  CAS  Google Scholar 

  • McRae EA (1998) Lily species. Lilies. Timber Press, Portland, pp 105–204

    Google Scholar 

  • Moisy C, Garrison KE, Meredith CP, Pelsy F (2008) Characterization of ten novel Ty1/copia-like retrotransposon families of grapevine genome. BMC Genom 9:469. doi:10.1186/1471-2164-9-469

    Article  Google Scholar 

  • Muratović E, Hidalgo O, Garnatje T, Siljak-Yakovlev S (2010) Molecular phylogeny and genome size in European Lilies (Genus Lilium, Liliaceae). Adv Sci Lett 3:180–189

    Article  Google Scholar 

  • Nishikawa T, Okazaki K, Uchino T, Arakawa K, Nagamine T (1999) A molecular phylogeny of Lilium in the transcribed spacer region of nuclear ribosomal DNA. J Mol Evol 49:238–249

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa T, Okazaki K, Arakawa K, Nagamine T (2001) Phylogenetic analysis of section Sinomartagon in genus Lilium using sequences of the internal transcribed spacer region in nuclear ribosomal DNA. Breed Sci 51:39–46

    Article  CAS  Google Scholar 

  • Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant J-P, Sourdille P, Balfourier F, Le Paslier M-C, Chauveau A et al (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and maker-assisted selection in wheat. Plant Biotechnol J 8:196–210

    Article  CAS  PubMed  Google Scholar 

  • Roy NS, Choi JY, Lee SI, Kim NS (2015) Marker utility of transposable elements for plant genetics, breeding, and ecology: a review. Genes Genom 37:141–151

    Article  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Smyth DR (1991) Dispersed repeats in plant genomes. Chromosoma 100:355–359

    Article  Google Scholar 

  • Smyth DR, Kalistsis P, Joseph JL, Sentry JW (1989) Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc Natl Acad Sci USA 86:5015–5019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sultana S, Lim YP, Bang JW, Chi HW (2011) Internal transcribed spacer (ITS) and genetic variations in Lilium native to Korea. Hortic Environ Biotechnol 52:502–510

    Article  CAS  Google Scholar 

  • Syed NH, Flavell AJ (2006) Sequence-specific amplification polymorphisms (SSAPs): a multilocus approach for analyzing transposon insertions. Nat Protoc 1:2746–2752

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vukich M, Schulman AH, Giordani T, Natali L, Kalendar R, Cavallini A (2009) Genetic variability in sunflower (Helianthus annus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor Appl Genet 119:1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Weber B, Schmidt T (2009) Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contains a putative chromodomain. Chromosome Res 17:379–396

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi M (1995) Detection of section-specific random amplified polymorphic DNA (RAPD) markers in Lilium. Theor Appl Genet 91:830–835

    Google Scholar 

  • Yamaguchi M, Abe H, Nakano M, Nakatsuka A (2002) PCR-based molecular markers in Asiatic hybrid lily. Sci Hortic 96:225–234

    Article  Google Scholar 

  • Yuan SY, Ge L, Liu C, Ming J (2013) The development of EST-SSR markers in Lilium regale and their cross-amplification in related species. Euphytica 189:393–419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant NRF-2013R1A1A2043773 from the Korea Research Foundation to NSK.

Conflict of interest

The authors declare no conflict of interest on the contents of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Soo Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SI., Kim, JH., Park, KC. et al. LTR-retrotransposons and inter-retrotransposon amplified polymorphism (IRAP) analysis in Lilium species. Genetica 143, 343–352 (2015). https://doi.org/10.1007/s10709-015-9833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-015-9833-6

Keywords

Navigation