Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402
PubMed
Article
CAS
Google Scholar
Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of flowering plant Arabidopsis thaliana. Nature 408:796–815
Article
Google Scholar
Baranski R, Maksylewicz-Kaul A, Nothnagel T, Cavagnaro P, Simon PW, Grzebelus D (2011) Genetic diversity of carrot (Daucus catota L.) cultivars revealed by analysis of SSr loci. Genet Resour Crop Evol 59:163–170
Article
Google Scholar
Bennett MD, Leith IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176
Article
CAS
Google Scholar
Bureau TE, Wessler SR (1994) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6:907–916
PubMed
CAS
Google Scholar
Cardoso HG, Campos MD, Costa AR, Campos MC, Nothnagel T, Arnholdt-Schmitt B (2009) Carrot alternative oxidase gene AOX2a demonstrates allelic and genotypic polymorphisms in intron 3. Physiol Plantarum 137:592–608
Article
CAS
Google Scholar
Cavagnaro PF, Chung SM, Szklarczyk M, Grzebelus D, Senalik D, Atkins AE, Simon PW (2009) Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Mol Genet Genomics 281:273–288
PubMed
Article
CAS
Google Scholar
Collins FS, Weissman SM (1984) Directional cloning of DNA fragments at large distance from an initial probe: a circularization method. Proc Natl Acad Sci USA 81:6812–6816
PubMed
Article
CAS
Google Scholar
Felsenstein J (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266:418–427
PubMed
Article
CAS
Google Scholar
Feschotte C, Wessler SR (2002) Mariner-like transposases are widespread and diverse in flowering plants. Proc Natl Acad Sci USA 99:280–285
PubMed
Article
CAS
Google Scholar
Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of Mariner-like transposable elements in rice reveals complex relationships with Stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163:747–758
PubMed
CAS
Google Scholar
Feschotte C, Osterlund MT, Peeler R, Wessler SR (2005) DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs. Nucl Acids Res 33:2153–2165
PubMed
Article
CAS
Google Scholar
Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107
PubMed
Article
CAS
Google Scholar
Grzebelus D, Simon PW (2009) Diversity of DcMaster-like elements of the PIF/Harbinger superfamily in the carrot genome. Genetica 135:347–353
PubMed
Article
Google Scholar
Grzebelus D, Yau YY, Simon PW (2006) Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.). Mol Genet Genomics 275:450–459
PubMed
Article
CAS
Google Scholar
Grzebelus D, Jagosz B, Simon PW (2007) The DcMaster transposon display maps polymorphic insertion sites in the carrot (Daucus carota L.) genome. Gene 390:67–74
PubMed
Article
CAS
Google Scholar
Grzebelus D, Gladysz M, Macko-Podgorni A, Gambin T, Golis B, Rakoczy R, Gambin A (2009) Population dynamics of miniature inverted-repeat transposable elements (MITEs) in Medicago truncatula. Gene 448:214–220
PubMed
Article
CAS
Google Scholar
Grzebelus D, Baranski R, Spalik K, Allender C, Simon PW (2011) Daucus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Vegetables. Springer, Berlin, pp 91–113
Chapter
Google Scholar
Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp 41:95–98
CAS
Google Scholar
Hatzopoulos P, Franz G, Choy L, Sung R (1990) Interaction of nuclear factors with upstream sequences of a lipid body membrane protein gene from carrot. Plant Cell 2:457–467
PubMed
CAS
Google Scholar
Hofacker SH (2003) Vienna RNA secondary structure server. Nucl Acids Res 31:3429–3431
PubMed
Article
CAS
Google Scholar
Hollister JD, Smith LM, Guo YL, Ott F, Weigel D, Gaut BS (2011) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 108:2322–2327
PubMed
Article
CAS
Google Scholar
Hu J, Reddy VS, Wessler SW (2000) The rice R family: two distinct subfamilies containing several miniature inverted-repeat transposable elements. Plant Mol Biol 42:667–678
PubMed
Article
CAS
Google Scholar
Iorizzo M, Senalik D, Grzebelus D, Bowman M, Cavagnaro PF, Ashrafi H, Van Deynze A, Simon PW (2011) De novo assembly of the carrot transcriptome from short-read sequences to characterize the genome and develop molecular markers. BMC Genomics 12:389
PubMed
Article
CAS
Google Scholar
Itoh Y, Hasebe M, Davies E, Takeda J, Ozeki Y (2003) Survival of Tdc transposable elements of the En/Spm superfamily in the carrot genome. Mol Gen Genomics 269:49–59
CAS
Google Scholar
Jiang N, Wessler SR (2001) Insertional preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13:2553–2564
PubMed
CAS
Google Scholar
Jiang N, Feschotte C, Zhang X, Wessler SR (2004) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119
PubMed
Article
CAS
Google Scholar
Kimura S, Mikiko O, Fukuda T, Ohno Y, Hongo C, Itoh Y, Koda T, Ozeki Y (2008) Role of miniature inverted repeat transposable elements inserted into the promoted region of carrot phenylalanine ammonia-lyase gene and its gene expression. Plant Biotechnol 25:473–481
Article
CAS
Google Scholar
Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar B, Ouyang S, Jiang J, Buell CR, Baker B (2009) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNA in the Solanaceae: new functional implications for MITEs. Genome Res 19:42–56
PubMed
Article
CAS
Google Scholar
Lampe DJ, Churchill MEA, Robertson HM (1996) A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J 15:5470–5479
PubMed
CAS
Google Scholar
Lampe DJ, Walden KKO, Robertson HM (2001) Loss of transposase-DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. Mol Biol Evol 18:954–961
PubMed
Article
CAS
Google Scholar
Macas J, Koblizkowa A, Neumann P (2005) Characterization of Stowaway MITEs in pea (Pisum sativum L.) and identification of their potential master elements. Genome 48:831–839
PubMed
Article
CAS
Google Scholar
Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, Woo SS, Sasinowski M, Presting G, Frish D, Goff S, Dean RA, Wing RA (2000) Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res 10:982–990
PubMed
Article
CAS
Google Scholar
Mason-Gamer RJ (2007) Multiple homoplasious insertions and deletions of a Triticae (Poaceae) DNA transposon: a phylogenetic perspective. BMC Evol Biol 7:92
PubMed
Article
Google Scholar
Menzel G, Dechyeva D, Keller H, Lange C, Himmelbauer H, Schmidt T (2006) Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L. Chromosom Res 14:831–844
Article
CAS
Google Scholar
Momose M, Abe Y, Ozeki Y (2010) Miniature inverted-repeat transposable elements of Stowaway are active in potato. Genetics 186:59–66
PubMed
Article
CAS
Google Scholar
Nowicka A, Grzebelus E, Grzebelus D (2012) Fluorescent in situ hybridization with arbitrarily amplified DNA fragments differentiates carrot (Daucus carota L.) chromosomes. Genome 55:205–213
PubMed
Article
CAS
Google Scholar
Ozeki Y, Davies E, Takeda J (1997) Somatic variation during long term subculturing of plant cells caused by insertion of a transposable element in a phenylalanine ammonia-lyase (PAL) gene. Mol Gen Genet 254:407–416
PubMed
Article
CAS
Google Scholar
Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
PubMed
CAS
Google Scholar
Rothnie HM, McCurrach KJ, Glover LA, Hardman N (1990) Retrotransposon-like nature of Tp1 elements: implications for the organization of highly repetitive, hypermethylated DNA in the genome of Physarum polucephalum. Nucleic Acids Res 19:279–286
Article
Google Scholar
Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386, Source code available at http://fokker.wi.mit.edu/primer3/
Sanan-Mishra N, Kumar V, Sopory SK, Mukherjee SK (2009) Cloning and validation of novel miRNA from basmati rice indicates cross talk between abiotic and biotic stress. Mol Genet Genomics 282:463–474
PubMed
Article
CAS
Google Scholar
Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115
PubMed
Article
CAS
Google Scholar
Takata M, Kiyohara A, Takasu A, Kishima Y, Ohtsubo H, Sano Y (2007) Rice transposable elements are characterized by various methylation environments in the genome. BMC Genomics 8:469
PubMed
Article
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739
PubMed
Article
CAS
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Res 24:4876–4882
Article
Google Scholar
Turcotte K, Srinivasan S, Bureau TE (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179
PubMed
Article
CAS
Google Scholar
Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at bz locus. Proc Natl Acad Sci USA 21:17644–17694
Article
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nature Rev Genet 8:973–982
PubMed
Article
CAS
Google Scholar
Yaakov B, Ben-David S, Kashkush K (2013) Genome-wide analysis of Stowaway-like MITEs in wheat revealed high sequence conservation, association with genes and genomic diversification. Plant Physiol 161:486–496
PubMed
Article
CAS
Google Scholar
Yang G, Weil CF, Wessler SR (2006) A rice Tc1/Mariner-like element transposes in yeast. Plant Cell 18:2469–2478
PubMed
Article
CAS
Google Scholar
Yang G, Nagel DH, Feschotte C, Hancock CN, Wessler SR (2009) Tuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE. Sci 325:1391–1394
Article
CAS
Google Scholar
Yau YY, Santos K, Simon PW (2005) Molecular tagging and selection for sugar type in carrot roots using co-dominant, PCR-based markers. Mol Breeding 16:1–10
Article
CAS
Google Scholar
Yu S, Li J, Luo L (2010) Complexity and specificity of precursor microRNAs driven by transposable elements in rice. Plant Biol Mol Rep 28:502–511
Article
CAS
Google Scholar
Zhou Y, Magill CW, Magill JM, Newton RJ (1998) An apparent of nonsymmetrical and sustained strand-specific hemimethylation in the Dc8 gene of carrot. Genome 41:23–33
PubMed
CAS
Google Scholar