Skip to main content
Log in

Complexity and Specificity of Precursor microRNAs Driven by Transposable Elements in Rice

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

In eukaryotes, small noncoding RNA molecules of 16–29 nucleotides in length play crucial roles in the regulation of gene expression. Some 377 sequences representing rice pseudo-microRNAs (miRNAs) are available in release 13.0 of the miRBase sequence database (http://microrna.sanger.ac.uk/sequences/index.shtml) and are grouped into 143 families. Most newly deposited miRNA sequences are likely to be species-specific. To understand the relationship between miRNAs and transposable elements (TEs) in rice, the RepeatMasker application (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker) was used to screen single-stranded precursor miRNA (pre-miRNA) sequences. This analysis revealed that 33.1% of miRNAs and 36.4% of miRNA families are associated with interspersed repeats, and most of them are species-specific. Furthermore, multiple miRNA families can be encoded by the same TE class. Alignment analysis revealed that miR439 originated from an MuDR4-OS TE, which amplified and diversified in the genome as an inverted repeat of the core sequence followed by multiple repeats. Multiple copies of miR445 and its complexity originate from and are driven by the DNA/Tourist TE class. These results provide an important contribution to the elucidation of TE-driven mechanisms that regulate the species specificity and complexity of rice miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290

    Article  CAS  PubMed  Google Scholar 

  • Arteaga-Vázquez M, Caballero-Pérez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18:3355–3369

    Article  PubMed  Google Scholar 

  • Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE, Depamphilis CW (2007) Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J 51:991–1003

    Article  CAS  PubMed  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development. Plant Physiol 132:709–717

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Coleman C, Liu R, Ma J, Ramakrishna W (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7:732–736

    Article  CAS  PubMed  Google Scholar 

  • Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, MR SB, Stadler PF, Tanzer A, Washietl S, Witwer C (2005) Evolutionary patterns of non-coding RNAs. Theor Biosci 123:301–369

    Article  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci U S A 101:11511–11516

    Article  CAS  PubMed  Google Scholar 

  • de Felippes FF, Schneeberger K, Dezulian T, Huson DH, Weigel D (2008) Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA 14:2455–2459

    Article  PubMed  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2:e219

    Article  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  CAS  PubMed  Google Scholar 

  • Guyot R, Keller B (2004) Ancestral genome duplication in rice. Genome 47:610–614

    Article  CAS  PubMed  Google Scholar 

  • Hutvagner G, Zamo PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  CAS  PubMed  Google Scholar 

  • Jiang DH, Yin CS, Yu AP, Zhou XF, Liang WQ, Yuan Z, Xu Y, Yu QB, Wen TQ, Zhang DB (2006) Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Res 16:507–518

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9:175–179

    Article  CAS  PubMed  Google Scholar 

  • Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih I, Jones-Rhoades M, Bartel D, Burge C (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  • Li A, Mao L (2007) Evolution of plant microRNA gene families. Cell Res 17:212–218

    CAS  PubMed  Google Scholar 

  • Li Y, Li W, Jin YX (2005) Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acat Biochim Biophys Sin (Shanghai) 37:75–87

    Article  Google Scholar 

  • Lu C, Jeong DH, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher SR, Maher C, Zhang LF, Ware D, Liu B, Cao XF, Meyers BC, Green PJ (2008) Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A 105:4951–4956

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A 101:12404–12410

    Article  CAS  PubMed  Google Scholar 

  • Maher C, Stein L, Ware D (2006) Evolution of Arabidopsis microRNA families through duplication events. Genome Res 16:510–519

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Function of microRNAs and related small RNAs in plants. Nat Genet 38 Suppl:S31–S36

    Article  PubMed  Google Scholar 

  • Oki N, Yano K, Okumoto Y, Tsukiyama T, Teraishi M, Tanisaka T (2008) A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice. Oryza sativa ssp. japonica. Genes Genet Syst 83:321–329

    Article  CAS  PubMed  Google Scholar 

  • Parsons TJ, Bradshaw HD Jr, Gordon MP (1989) Systemic accumulation of specific mRNAs in response to wounding in poplar trees. Proc Natl Acad Sci USA 86:7895–7899

    Article  CAS  PubMed  Google Scholar 

  • Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14:814–821

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Ruvkun G (2001) Glimpses of a tiny rNA world molecular biology. Science 294:797–799

    Article  CAS  PubMed  Google Scholar 

  • Schween G, Gorr G, Hohe A, Reski R (2003) Unique tissue-specific cell cycle in Physcomitrella. Plant Biol 5:50–58

    Article  Google Scholar 

  • Slotkin RK, Freeling M, Lisch D (2005) Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37:641–644

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37

    Article  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2005

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–1411

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    Article  PubMed  Google Scholar 

  • Takuno S, Innan H (2008) Evolution of complexity in miRNA-mediated gene regulation systems. Trend Genet 24:56–59

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhu QH, Guo XY, Gui YJ, Bao JD, Helliwell C, Fan LJ (2007) Molecular evolution and selection of a gene encoding two tandem microRNAs in rice. FEBS Lett 581:4789–4793

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  • Xue LJ, Zhang JJ, Xue HW (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucl Acids Res 37:916–930

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Stellwag EJ, Pan X (2009) Large-scale genome analysis reveals unique features of microRNAs. Gene 443:100–109

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18:1456–1465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lida Zhang (Plant Biotechnology Research Center, Shanghai Jiaotong University, Shanghai, China) for giving some valuable advice. This research is supported by National Natural Science Foundation of China (30830071) and Shanghai Rising-Star Program (07QA14045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Table 1

List of microRNA families and its members in rice (XLS 72 kb)

Supplement Table 2

Rice microRNA genes derived from interspersed repeats (XLS 41 kb)

Supplement Table 3

Arabidopsis microRNA genes derived from interspersed repeats (XLS 19 kb)

Supplement Table 4

Pre-miR439, pre-miR439*, and their homologs in rice genome (XLS 20 kb)

Supplement Table 5

Pre-miR445 and their homologs in rice genome (XLS 39 kb)

Supplement Fig. 1

Potential secondary structures of precursor miR439i and its homologs in rice genome. The genome loci of miR439i1-5 were shown in Supplement Table 4. The bars indicate the responding miR439i sequence (GIF 206 kb)

High resolution (TIFF 1239 kb)

Supplement Fig. 2

Alignment of miR439 gene region in rice genome. The box and broken box indicated the mature sequence domain and the complementary sequences, respectively. The underline and broken lines indicated the matrue sequence of miR439j and its complementary sequence (GIF 1025 kb)

High resolution (TIFF 1695 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, S., Li, J. & Luo, L. Complexity and Specificity of Precursor microRNAs Driven by Transposable Elements in Rice. Plant Mol Biol Rep 28, 502–511 (2010). https://doi.org/10.1007/s11105-009-0175-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0175-3

Keywords

Navigation