Advertisement

Genetica

, Volume 131, Issue 3, pp 267–274 | Cite as

Characterization of Japanese flounder karyotype by chromosome bandings and fluorescence in situ hybridization with DNA markers

  • Atushi Fujiwara
  • Mika Fujiwara
  • Chizuko Nishida-Umehara
  • Syuiti Abe
  • Tetsuji Masaoka
Article

Abstract

The chromosomes of Japanese flounder, Paralichthys olivaceus, were examined by conventional differential staining methods including G-, Q-, C-, silver (Ag)-, fluorochrome, and replication R-bandings and by fluorescence in situ hybridization (FISH) with 5S and 18S rDNAs and telomeric DNA as probes. Replication R-banding substantially made it possible to identify 24 homologous pairs by their RBG-banding pattern and relative length. Both rDNA loci were mapped to chromosome 1, where 5S and 18S rDNA loci were located at the centromeric region and secondary constriction, respectively. C-banding revealed that both rDNA loci were heterochromatic, and 18S rDNA loci were positive for chromomycin A3 but negative for 4′,6-diamidino-2-phenylindole (DAPI) staining. Telomeric FISH signals were observed at all chromosome ends and at the interstitial region of some chromosomes. The observed results were discussed in relation to the karyotype evolution in the order Pleuronectiformes.

Keywords

Japanese flounder Chromosome banding rDNA Telomere FISH 

Abbreviations

FISH

fluorescence in situ hybridization

AgNOR(s)

silver-stained nucleolar organizing region(s)

PI

propidium iodide

DAPI

4′,6-diamidino-2-phenylindole

CMA3

chromomycin A3

PCR

polymerase chain reaction

BrdU

5-bromo-2′-deoxyuridine

RBG

R-bands by BrdU using Giemsa

Notes

Acknowledgements

We thank Drs. H. Furuita and T. Kamaishi, National Research Institute of Aquaculture (NRIA), for kindly providing fish used. This study was supported in part by Grants-in-Aid from the Fishery Agency, and from the 21st Century COE Program from the Ministry of Education, Sports, Culture, Science and Technology, Japan.

References

  1. Affonso PR, Galetti PM Jr (2005) Chromosomal diversification of reef fishes from genus Centropyge (Perciformes, Pomacanthidae). Genetica 123:227–233PubMedCrossRefGoogle Scholar
  2. Amemiya CT, Gold JR (1986) Chromomycin A3 stains nucleolus organizer regions of fish chromosomes. Copeia 1986:226–231CrossRefGoogle Scholar
  3. Berendzen PB, Dimmick WW (2002) Phylogenic relationships of Pleuronectiformes based on molecular evidence. Copeia 3:642–652CrossRefGoogle Scholar
  4. Carvalho de Azevedo MF, Oliveira C, Pardo BG, Martinez P, Foresti F (2005) Chromosome banding and 18S rDNA in situ hybridization analysis of seven species of the family Achiridae (Teleostei: Pleuronectiformes). Genetica 125:125–132PubMedCrossRefGoogle Scholar
  5. Coimbra MRM, Kobayashi K, Koretsugu S, Hasegawa O, Ohara E, Ozaki A, Sakamoto T, Naruse K, Okamoto N (2003) A genetic linkage map of the Japanese flounder, Paralichthys olivaceus. Aquaculture 220:203–218CrossRefGoogle Scholar
  6. Deiana AM, Cau A, Salvadori S, Coluccia E, Cannas R, Milia A, Tagliavini J (2000) Major and 5S ribosomal sequences of the largemouth bass Micropterus salmoides (Perciformes, Centrarchidae) are localized in GC-rich regions of the genome. Chromosome Res 8:213–218PubMedCrossRefGoogle Scholar
  7. Fontana F, Lanfredi M, Congiu L, Leis M, Chicca M, Rossi R (2003) Chromosomal mapping of 18S-28S and 5S rRNA genes by two-colour fluorescent in situ hybridization in six sturgeon species. Genome 46:473–477PubMedCrossRefGoogle Scholar
  8. Fuji K, Kobayashi K, Hasegawa O, Ozaki A, Sakamoto T, Okamoto N (2002) Quantitative trait locus (QTL) associated with resistance to Lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Fourth International Symposium on Aquatic Animal Health, Abstracts. p 119Google Scholar
  9. Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC (1997) Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma 106:44–52PubMedCrossRefGoogle Scholar
  10. Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC (1998) Chromosomal localization and heterochromatin association of ribosomal RNA gene loci and silver-stained nucleolar organizer regions in salmonid fishes. Chromosome Res 6:463–471PubMedCrossRefGoogle Scholar
  11. Fujiwara A, Nishida-Umehara C, Sakamoto T, Okamoto N, Nakayama I, Abe S (2001) Improved fish lymphocyte culture for chromosome preparation. Genetica 111:77–89PubMedCrossRefGoogle Scholar
  12. Fujiwara A (2005) Recent advancement in fish cytogenetics. J Anim Genet 32:99–108Google Scholar
  13. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015PubMedCrossRefGoogle Scholar
  14. Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780PubMedCrossRefGoogle Scholar
  15. Inafuku J, Nabeyama M, Kikuma Y, Saitoh J, Kubota S, Kohno S (2000) Chromosomal location and nucleotide sequences of 5S ribosomal DNA of two cyprinid species (Osteichthyes, Pisces). Chromosome Res 8:193–199PubMedCrossRefGoogle Scholar
  16. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957PubMedCrossRefGoogle Scholar
  17. Katagiri T, Asakawa S, Hirono I, Aoki T, Shimizu N (2000) Genomic bacterial artificial chromosome library of the Japanese flounder Paralichthys olivaceus. Mar Biotechnol (NY) 2:571–576CrossRefGoogle Scholar
  18. Kikuno T, Ojima Y, Yamashita N (1986) Chromosomes of flounder, Paralichthys olivaceus. Proc Japan Acad 62:194–196CrossRefGoogle Scholar
  19. Kim DS, Cheong SC, Park SR, Lee JK (1988) Cytogenetic and biochemical studies on the flatfish, Paralichthys olivaceus. Bull Nat Fish Res Dev Agency 42:135–142Google Scholar
  20. Korenberg JR, Rykowski MC (1988) Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53:391–400PubMedCrossRefGoogle Scholar
  21. LeGrande WH (1975) Karyology of six species of Louisiana flatfishes (Pleuronectiformes: Osteichthyes). Copeia 1975(3):516–522CrossRefGoogle Scholar
  22. Libertini A, Mandrioli M, Colomba MS, Bertotto D, Francescon A, Vitturi R (2002) A cytogenetic study of the common sole, Solea solea, from Northern Adriatic Sea. Chromosome Sci 6:63–66Google Scholar
  23. Martinez JL, Moran P, Garcia-Vazquez E, Pendas AM (1996) Chromosomal localization of the major and 5S rRNA genes in the European eel (Anguilla anguilla). Cytogenet Cell Genet 73:149–152PubMedGoogle Scholar
  24. Martins C, Galetti PM Jr (2001) Two 5S rDNA arrays in neotropical fish species: is it a general rule for fishes? Genetica 111:439–446PubMedCrossRefGoogle Scholar
  25. Morescalchi MA, Liguori I, Rocco L, Stingo V (2006) Karyotypic characterization and genomic organization of the 5S rDNA in Erpetoichthys calabaricus (Osteichthyes, Polypteridae). GeneticaGoogle Scholar
  26. Noleto, RB, MR Vicari, RR Cipriano, RF Artoni and MM Cestari, (2006) Physical mapping of 5S and 45S rDNA loci in pufferfishes (Tetraodontiformes). GeneticaGoogle Scholar
  27. Ohno S (1970) The enormous diversity in genome size of fish as a refection of nature’s extensive experiments with gene duplications. Trans Am Fishery Soc 99:120–130CrossRefGoogle Scholar
  28. Ojima Y, Yamamoto K (1990) Cellular DNA contents of fishes determined by flow cytometry. La Kromosomo II-57:1871–1888Google Scholar
  29. Pardo BG, Bouza C, Castro J, Martinez P, Sanchez L (2001) Localization of ribosomal genes in Pleuronectiformes using Ag-, CMA3-banding and in situ hybridization. Heredity 86:531–536PubMedCrossRefGoogle Scholar
  30. Rocco L, Costagliola D, Fiorillo M, Tinti F, Stingo V (2005) Molecular and chromosomal analysis of ribosomal cistrons in two cartilaginous fish, Taeniura lymma and Raja montagui (Chondrichthyes, Batoidea). Genetica 123:245–253PubMedCrossRefGoogle Scholar
  31. Rosa R, Bellafronte E, Filho OM, Margarido VP (2006) Constitutive heterochromatin, 5S and 18S rDNA genes in Apareiodon sp. (Characiformes, Parodontidae) with a ZZ/ZW sex chromosome system. Genetica 128:159–166PubMedCrossRefGoogle Scholar
  32. Sakamoto K, Nishikawa S (1980) Chromosomes of three flatfishes (Pleuronectiformes). Japan J Ichthyol 27:268–272Google Scholar
  33. Schmid M, Vitelli L, Batistoni R (1987) Chromosome banding in amphibia. XI. Constitutive heterochromatin, nucleolus organizers, 18S + 28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae. Chromosoma 95:271–284PubMedCrossRefGoogle Scholar
  34. Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324PubMedCrossRefGoogle Scholar
  35. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972PubMedCrossRefGoogle Scholar
  36. Sola L, Gornung E (2001) Classical and molecular cytogenetics of the zebrafish, Danio rerio (Cyprinidae, Cypriniformes): an overview. Genetica 111:397–412PubMedCrossRefGoogle Scholar
  37. Sola L, Rossi AR, Annesi F, Gornung E (2003) Cytogenetic studies in Sparus auratus (Pisces, Perciformes): molecular organization of 5S rDNA and chromosomal mapping of 5S and 45S ribosomal genes and of telomeric repeats. Hereditas 139:232–236PubMedCrossRefGoogle Scholar
  38. Tabata K (1995) Reduction of female proportion in lower growing fish separated from normal and fiminized seedlings of hirame Paralichthys oilivaceus. Fisheries Sci 61:199–201Google Scholar
  39. Tigano C, Rocco L, Ferrito V, Costagliola D, Pappalardo AM, Stingo V (2004) Chromosomal mapping and molecular characterization of ribosomal RNA genes in Lebias fasciata (Teleostei, Cyprinodontidae). Genetica 121:95–100PubMedCrossRefGoogle Scholar
  40. Vitturi R, Catalano E, Colombera D (1993) Chromosome analysis of Bothus podas (Pisces, Pleuronectiformes) from the Mediterranean Sea. J Fish Biol 43:221–227Google Scholar
  41. Yamamoto E (1999) Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture 173:235–246CrossRefGoogle Scholar
  42. Yoshida MC, Ikeuchi T, Sasaki M (1975) Differential staining of parental chromosomes in interspecific cell hybrids with a combined Quinacrine and 33258 Hoechst technique. Proc Japan Acad 51:184–187CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Atushi Fujiwara
    • 1
  • Mika Fujiwara
    • 1
  • Chizuko Nishida-Umehara
    • 2
  • Syuiti Abe
    • 3
  • Tetsuji Masaoka
    • 1
  1. 1.Inland Station, Fisheries Research AgencyNational Research Institute of AquacultureTamaki MieJapan
  2. 2.Laboratory of Animal Cytogenetics, Division of Genome Dynamics, Creative Research Initiative “Sousei”Hokkaido UniversityKita-ku SapporoJapan
  3. 3.Laboratory of Breeding Science, Division of Marine Biosciences, Graduate School of Fisheries SciencesHokkaido UniversityMinato HakodateJapan

Personalised recommendations