Skip to main content

Abstract

Echinoderms are a phylum of invertebrate deuterostomes that are morphologically characterized by a fivefold (pentameric) symmetric adult body plan. There are five extant subtaxa, Crinoidea (e.g., sea lilies and feather stars), Asteroidea (e.g., sea stars), Ophiuroidea (e.g., brittle stars), Echinoidea (e.g., sea urchins), and Holothuroidea (e.g., sea cucumbers) (Fig. 1.1). Studies of morphology and molecules demonstrate the existence of two higher-order subphylum clades: Pelmatozoa (Crinoidea) and Eleutherozoa (the remaining classes). Echinodermata together with Hemichordata form the clade Ambulacraria (to which some authors add the enigmatic Xenacoelomorpha group). This grouping is the sister to the Chordata.

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams NL, Campanale JP, Foltz KR (2012) Proteomic responses of sea urchin embryos to stressful ultraviolet radiation. Integr Comp Biol 52:665–680

    CAS  PubMed  Google Scholar 

  • Amemiya S (1989) Electron microscopic studies on primary mesenchyme cell ingression and gastrulation in relation to vegetal pole cell behavior in sea urchin embryos. Exp Cell Res 183:453–462

    CAS  PubMed  Google Scholar 

  • Andrikou C, Iovene E, Rizzo F, Oliveri P, Arnone MI (2013) Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors. Evodevo 4:33

    PubMed Central  PubMed  Google Scholar 

  • Angerer LM, Yaguchi S, Angerer RC, Burke RD (2011) The evolution of nervous system patterning: insights from sea urchin development. Development 138:3613–3623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Annunziata R, Arnone MI (2014) A dynamic regulatory network explains ParaHox gene control of gut patterning in the sea urchin. Development 141:2462–2472

    CAS  PubMed  Google Scholar 

  • Annunziata R, Martinez P, Arnone MI (2013) Intact cluster and chordate-like expression of ParaHox genes in a sea star. BMC Biol 11:68

    PubMed Central  PubMed  Google Scholar 

  • Annunziata R, Perillo M, Andrikou C, Cole AG, Martinez P, Arnone MI (2014) Pattern and process during sea urchin gut morphogenesis: the regulatory landscape. Genesis 52:251–268

    PubMed  Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber R, Barber A, Bartsch I, Berta A, Blazewicz-Paszkowycz M, Bock P, Boxshall G, Boyko CB, Brandao SN, Bray RA, Bruce NL, Cairns SD, Chan TY, Cheng LN, Collins AG, Cribb T, Curini-Galletti M, Dahdouh-Guebas F, Davie PJF, Dawson MN, De Clerck O, Decock W, De Grave S, de Voogd NJ, Domning DP, Emig CC, Erseus C, Eschmeyer W, Fauchald K, Fautin DG, Feist SW, Fransen CHJM, Furuya H, Garcia-Alvarez O, Gerken S, Gibson D, Gittenberger A, Gofas S, Gomez-Daglio L, Gordon DP, Guiry MD, Hernandez F, Hoeksema BW, Hopcroft RR, Jaume D, Kirk P, Koedam N, Koenemann S, Kolb JB, Kristensen RM, Kroh A, Lambert G, Lazarus DB, Lemaitre R, Longshaw M, Lowry J, Macpherson E, Madin LP, Mah C, Mapstone G, McLaughlin PA, Mees J, Meland K, Messing CG, Mills CE, Molodtsova TN, Mooi R, Neuhaus B, Ng PKL, Nielsen C, Norenburg J, Opresko DM, Osawa M, Paulay G, Perrin W, Pilger JF, Poore GCB, Pugh P, Read GB, Reimer JD, Rius M, Rocha RM, Saiz-Salinas JI, Scarabino V, Schierwater B, Schmidt-Rhaesa A, Schnabel KE, Schotte M, Schuchert P, Schwabe E, Segers H, Self-Sullivan C, Shenkar N, Siegel V et al (2012) The magnitude of global marine species diversity. Curr Biol 22:2189–2202

    CAS  PubMed  Google Scholar 

  • Arenas-Mena C, Martinez P, Cameron RA, Davidson EH (1998) Expression of the Hox gene complex in the indirect development of a sea urchin. Proc Natl Acad Sci U S A 95:13062–13067

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arenas-Mena C, Cameron AR, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631–4643

    CAS  PubMed  Google Scholar 

  • Arenas-Mena C, Cameron RA, Davidson EH (2006) Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo. Dev Growth Differ 48:463–472

    CAS  PubMed  Google Scholar 

  • Arnone MI, Rizzo F, Annunciata R, Cameron RA, Peterson KJ, Martinez P (2006) Genetic organization and embryonic expression of the ParaHox genes in the sea urchin S. purpuratus: insights into the relationship between clustering and colinearity. Dev Biol 300:63–73

    CAS  PubMed  Google Scholar 

  • Balser EJ (2002) Phylum echinodermata: crinoidea. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, San Diego, pp 463–482

    Google Scholar 

  • Bannister R, McGonnell IM, Graham A, Thorndyke MC, Beesley PW (2005) Afuni, a novel transforming growth factor-beta gene is involved in arm regeneration by the brittle star Amphiura filiformis. Dev Genes Evol 215:393–401

    CAS  PubMed  Google Scholar 

  • Baughman KW, McDougall C, Cummins SF, Hall M, Degnan BM, Satoh N, Shoguchi E (2014) Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster Planci. Genesis 52(12):952–958

    Google Scholar 

  • Ben Khadra Y, Said K, Thorndyke M, Martinez P (2014) Homeobox genes expressed during echinoderm arm regeneration. Biochem Genet 52:166–180

    CAS  PubMed  Google Scholar 

  • Birenheide R, Tamori M, Motokawa T, Ohtani M, Iwakoshi E, Muneoka Y, Fujita T, Minakata H, Nomoto K (1998) Peptides controlling stiffness of connective tissue in sea cucumbers. Biol Bull 194:253–259

    CAS  PubMed  Google Scholar 

  • Bonasoro F, Candia Carnevali MD, Sala F, Patruno M, Thorndyke MC (1999) Regenerative potential of crinoid arm explants. In: Candia Carnevali MD, Bonasoro F (eds) Echinoderm research 1998. Balkema, Rotterdam, pp 133–138

    Google Scholar 

  • Boveri T (1902) Uber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh Phys Med Ges Wurzburg 35:67–90

    Google Scholar 

  • Burke RD (1989) Echinoderm metamorphosis: comparative aspects of the change in form. In: echinoderm studies, vol 3. Balkema, Rotterdam, pp 81–107

    Google Scholar 

  • Burke RD, Alvarez CM (1988) Development of the esophageal muscles in embryos of the sea urchin Strongylocentrotus purpuratus. Cell Tissue Res 252:411–417

    CAS  PubMed  Google Scholar 

  • Burke RD, Myers RL, Sexton TL, Jackson C (1991) Cell movements during the initial phase of gastrulation in the sea urchin embryo. Dev Biol 146:542–557

    CAS  PubMed  Google Scholar 

  • Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang D, Mellott D, Olinski R, Hallbook F, Thorndyke MC (2006) A genomic view of the sea urchin nervous system. Dev Biol 300:434–460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burke RD, Moller DJ, Krupke OA, Taylor VJ (2014) Sea urchin neural development and the metazoan paradigm of neurogenesis. Genesis 52:208–221

    PubMed  Google Scholar 

  • Burns G, Ortega-Martinez O, Dupont S, Thorndyke MC, Peck LS, Clark MS (2012) Intrinsic gene expression during regeneration in arm explants of Amphiura filiformis. J Exp Mar Biol Ecol 413:106–112

    CAS  Google Scholar 

  • Bury H (1895) The metamorphosis of echinoderms. Quart J Microsc Sci (NS) 38:45–135

    Google Scholar 

  • Bury H (1989) Studies in the embryology of echinoderms. Quart J Microsc Sci (NS) 29:409–449, plates XXXVII–XXXIX

    Google Scholar 

  • Byrne M (1996) Viviparity and intragonadal cannibalism in the diminutive sea stars Patiriella vivipara and P. parvivipara (family Asterinidae). Mar Biol 125:551–567

    Google Scholar 

  • Byrne M (2001) The morphology of autotomy structures in the sea cucumber Eupentacta quinquesemita before and during evisceration. J Exp Biol 204:849–863

    CAS  PubMed  Google Scholar 

  • Byrne M (2006) Life history diversity and evolution in the Asterinidae. Integr Comp Biol 46:243–254

    CAS  PubMed  Google Scholar 

  • Byrne M, Barker MF (1991) Embryogenesis and larval development of the asteroid Patiriella regularis viewed by light and scanning electron-microscopy. Biol Bull 180:332–345

    Google Scholar 

  • Byrne M, Selvakumaraswamy P (2002) Phylum Echinodermata: ophiuroidea. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, San Diego, pp 488–498

    Google Scholar 

  • Byrne M, Villinski JT, Cisternas P, Siegel RK, Popodi E, Raff RA (1999) Maternal factors and the evolution of developmental mode: evolution of oogenesis in Heliocidaris erythrogramma. Dev Genes Evol 209:275–283

    CAS  PubMed  Google Scholar 

  • Byrne M, Cisternas P, Elia L, Relf B (2005) Engrailed is expressed in larval development and in the radial nervous system of Patiriella sea stars. Dev Genes Evol 215:608–617

    CAS  PubMed  Google Scholar 

  • Byrne M, Nakajima Y, Chee FC, Burke RD (2007) Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria. Evol Dev 9:432–445

    PubMed  Google Scholar 

  • Cameron RA, Davidson EH (1991) Cell type specification during sea urchin development. Trends Genet 7:212–218

    CAS  PubMed  Google Scholar 

  • Cameron RA, Fraser SE, Britten RJ, Davidson EH (1991) Macromere cell fates during sea urchin development. Development 113:1085–1091

    CAS  PubMed  Google Scholar 

  • Candia Carnavali MD, Burighel P (2010) Regeneration in echinoderms and ascidians. In: eLS. Wiley, Chichester

    Google Scholar 

  • Candia Carnevali MD (2006) Regeneration in echinoderms: repair, regrowth, cloning. ISJ 3:64–76

    Google Scholar 

  • Candia Carnevali MD, Bonasoro F (2001a) Introduction to the biology of regeneration in echinoderms. Microsc Res Tech 55:365–368

    CAS  PubMed  Google Scholar 

  • Candia Carnevali MD, Bonasoro F (2001b) Microscopic overview of crinoid regeneration. Microsc Res Tech 55:403–426

    CAS  PubMed  Google Scholar 

  • Chia FS (1968) The embryology of the brooding starfish, Leptasterias hexactis (Stimpson). Acta Zool 49:321–354

    Google Scholar 

  • Chia FS, Burke RD (1978) Echinoderm metamorphosis: fate of larval structures. In: Chia FS, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier North Holland Biomedical Press, New York, pp 219–234

    Google Scholar 

  • Cisternas P, Byrne M (2009) Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua. Dev Genes Evol 219:613–618

    CAS  PubMed  Google Scholar 

  • Cobb JLS (1995) The nervous system of echinodermata: recent results and new approaches. In: Breidbach O, Kutsche W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser Verlag, Basel

    Google Scholar 

  • Cole AG, Rizzo F, Martinez P, Fernandez-Serra M, Arnone MI (2009) Two ParaHox genes, SpLox and SpCdx, interact to partition the posterior endoderm in the formation of a functional gut. Development 136:541–549

    CAS  PubMed  Google Scholar 

  • Croce JC, McClay DR (2010) Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137:83–91

    CAS  PubMed Central  PubMed  Google Scholar 

  • Croce J, Lhomond G, Lozano JC, Gache C (2001) ske-T, a T-box gene expressed in the skeletogenic mesenchyme lineage of the sea urchin embryo. Mech Dev 107:159–162

    CAS  PubMed  Google Scholar 

  • Czarkwiani A, Dylus DV, Oliveri P (2013) Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis. Gene Expr Patterns GEP 13:464–472

    CAS  PubMed  Google Scholar 

  • Dan K (1960) Cyto-embryology of echinoderms and amphibia. Int Rev Cytol 9:321–367

    CAS  PubMed  Google Scholar 

  • Dan JC, Hagiwara Y (1967) Studies on the acrosome. IX. Course of acrosome reaction in the starfish. J Ultrastruct Res 18:562–579

    CAS  PubMed  Google Scholar 

  • Dan K, Okazaki K (1956) Cyto-embryological studies of sea urchin. III. Role of the secondary mesenchyme cells in the formation of the primitive gut in the sea urchin larvae. Biol Bull 110:29–42

    Google Scholar 

  • David B, Mooi R (1998) Major events in the evolution of echinoderms viewed by the light of embryology. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema, Rotterdam, pp 21–28

    Google Scholar 

  • David ES, Luke NH, Livingston BT (1999) Characterization of a gene encoding a developmentally regulated winged helix transcription factor of the sea urchin Strongylocentrotus purpuratus. Gene 236:97–105

    CAS  PubMed  Google Scholar 

  • David B, Lefebvre B, Mooi R, Parsley R (2000) Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology 26:529–555

    Google Scholar 

  • Davidson EH (1989) Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism. Development 105:421–445

    CAS  PubMed  Google Scholar 

  • Davidson EH (1990) How embryos work: a comparative view of diverse modes of cell fate specification. Development 108:365–389

    CAS  PubMed  Google Scholar 

  • Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic/Elsevier, San Diego

    Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    CAS  PubMed  Google Scholar 

  • Davidson EH, Cameron RA, Ransick A (1998) Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms. Development 125:3269–3290

    CAS  PubMed  Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678

    CAS  PubMed  Google Scholar 

  • Derbès M (1847) Observations sur le méchanisme et les phénomènes qui accompagnent la formation de l’embryon chez l’oursin comestible. Ann Sci Nat Ill Série Zool 8:80–98

    Google Scholar 

  • Dolmatov IY, Ferreri P, Bonasoro F, Candia Carnevali MD (2001) Visceral regeneration in the crinoid Antedon mediterranea. In: Feral JP, Bruno D (eds) Echinoderm research. A. A. Balkema, Rotterdam

    Google Scholar 

  • Domazet-Loso T, Tautz D (2010) A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468:815-U107

    Google Scholar 

  • Driesch H (1892) The potency of the first two cleavage cells in echinoderm development: experimental production of partial and double formations. In: Willier BH, Oppenheimer JM (eds) Foundations of experimental embryology. Hafner, New York, 1974

    Google Scholar 

  • Du HX, Bao ZM, Hou R, Wang S, Su HL, Yan JJ, Tian ML, Li Y, Wei W, Lu W, Hu XL, Wang S, Hu JJ (2012) Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867). PLoS One 7:e33311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dupont S, Thorndyke MC (2006) Growth or differentiation? Adaptive regeneration in the brittlestar Amphiura filiformis. J Exp Biol 209:3873–3881

    PubMed  Google Scholar 

  • Eaves AA, Palmer AR (2003) Reproduction: widespread cloning in echinoderm larvae. Nature 425:146

    CAS  PubMed  Google Scholar 

  • Edmondson CH (1935) Autotomy and regeneration in Hawaiian starfishes. Occas Pap Bernice Pauahi Bishop Mus 11:3–20

    Google Scholar 

  • Emlet RB (1988) Larval form and metamorphosis of a primitive Sea-urchin, Eucidaris thouarsii (Echinodermata, Echinoidea, Cidaroida), with implications for developmental and phylogenetic studies. Biol Bull 174:4–19

    Google Scholar 

  • Emlet RB (1995) Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma. Dev Biol 167:405–415

    CAS  PubMed  Google Scholar 

  • Emlet RB, Joung CM, George SB (2002) Phylum echinodermata: echinoidea. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, San Diego, pp 531–551

    Google Scholar 

  • Emson RH, Wilkie IC (1980) Fission and autotomy in echinoderms. Oceanogr Mar Biol Annu Rev 18:155–250

    Google Scholar 

  • Elia L, Selvakumaraswamy P, Byrne M (2009) Nervous system development in feeding and nonfeeding Asteroid larvae and the early juvenile. Biol Bull 216:322–334

    Google Scholar 

  • Elia L, Cisternas P, Byrne M (2010) Characterization and expression of a sea star otx orthologue (ProtxB1/2) in the larva of Paririella regularis. Gene Exp Patterns 216:322–334

    Google Scholar 

  • Ettensohn CA (1984) Primary invagination of the vegetal plate during sea urchin gastrulation. Am Zool 24:571–588

    Google Scholar 

  • Ettensohn CA (1985) Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells. Dev Biol 112:383–390

    CAS  PubMed  Google Scholar 

  • Ettensohn CA, Ingersoll EP (1992) Morphogenesis of the sea urchin embryo. Morphogenesis: an analysis of the development of biological structures. Marcel Dekker, New York, pp 189–262

    Google Scholar 

  • Ettensohn CA, Ruffins SW (1993) Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells. Development 117:1275–1285

    CAS  PubMed  Google Scholar 

  • Ferkowicz MJ, Raff RA (2001) Wnt gene expression in sea urchin development: heterochronies associated with the evolution of developmental mode. Evol Dev 3:24–33

    CAS  PubMed  Google Scholar 

  • Fink RD, McClay DR (1985) Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev Biol 107:66–74

    CAS  PubMed  Google Scholar 

  • Foerder CA, Shapiro BM (1977) Release of ovoperoxidase from sea urchin eggs hardens the fertilization membrane with tyrosine crosslinks. Proc Natl Acad Sci U S A 74:4214–4218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fol MH (1877) Sur le premier développement d’une Étoile de mer. Comptes Rendus 84:357–360

    Google Scholar 

  • Foote M (1999) Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25:1–115

    Google Scholar 

  • Fortini ME, Artavanis-Tsakonas S (1994) The suppressor of hairless protein participates in notch receptor signaling. Cell 79:273–282

    CAS  PubMed  Google Scholar 

  • Franco CF, Santos R, Coelho AV (2011a) Exploring the proteome of an echinoderm nervous system: 2-DE of the sea star radial nerve cord and the synaptosomal membranes subproteome. Proteomics 11:1359–1364

    CAS  PubMed  Google Scholar 

  • Franco CF, Santos R, Coelho AV (2011b) Proteome characterization of sea star coelomocytes – the innate immune effector cells of echinoderms. Proteomics 11:3587–3592

    CAS  PubMed  Google Scholar 

  • Franco CF, Soares R, Pires E, Santos R, Coelho AV (2012) Radial nerve cord protein phosphorylation dynamics during starfish arm tip wound healing events. Electrophoresis 33:3764–3778

    CAS  PubMed  Google Scholar 

  • Franklin LE (1970) Fertilization and the role of the acrosomal region in non-mammals. Biol Reprod 2(Suppl 2):159–176

    PubMed  Google Scholar 

  • Fresques T, Zazueta-Novoa V, Reich A, Wessel GM (2014) Selective accumulation of germ-line associated gene products in early development of the sea star and distinct differences from germ-line development in the sea urchin. Dev Dyn 243:568–587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gan L, Mao CA, Wikramanayake A, Angerer LM, Angerer RC, Klein WH (1995) An orthodenticle-related protein from Strongylocentrotus purpuratus. Dev Biol 167:517–528

    CAS  PubMed  Google Scholar 

  • Gao F, Davidson EH (2008) Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc Natl Acad Sci U S A 105:6091–6096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gemmill JF (1914) The development and certain points in the adult structure of the starfish Asterias rubens L. Philos Trans R Soc Lond B 205:213–294

    Google Scholar 

  • Ghiglione C, Lhomond G, Lepage T, Gache C (1994) Structure of the sea urchin hatching enzyme gene. Eur J Biochem 219:845–854

    CAS  PubMed  Google Scholar 

  • Gibson AW, Burke RD (1985) The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus. Dev Biol 107:414–419

    CAS  PubMed  Google Scholar 

  • Gibson AW, Burke RD (1987) Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos. Exp Cell Res 173:546–557

    CAS  PubMed  Google Scholar 

  • Giusti AF, Hoang KM, Foltz KR (1997) Surface localization of the sea urchin egg receptor for sperm. Dev Biol 184:10–24

    CAS  PubMed  Google Scholar 

  • Glabe CG, Vacquier VD (1977) Isolation and characterization of the vitelline layer of sea urchin eggs. J Cell Biol 75:410–421

    CAS  PubMed  Google Scholar 

  • Glabe CG, Vacquier VD (1978) Egg surface glycoprotein receptor for sea urchin sperm bindin. Proc Natl Acad Sci U S A 75:881–885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gondolf AL (2000) Light and scanning electron microscopic observations on the developmental biology of the common starfish, Asterias rubens Linne. Ophelia 52:153–170

    Google Scholar 

  • Goss RJ (1969) Principles of regeneration. Academic, New York

    Google Scholar 

  • Gosselin P, Jangoux M (1998) From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata, Echinoida). Zoomorphology 118:31–43

    Google Scholar 

  • Haag ES (2005) Echinoderm rudiments, rudimentary bilaterians, and the origin of the chordate CNS. Evol Dev 7:280–281

    PubMed  Google Scholar 

  • Hall HG (1978) Hardening of the sea urchin fertilization envelope by peroxidase-catalyzed phenolic coupling of tyrosines. Cell 15:343–355

    CAS  PubMed  Google Scholar 

  • Hara Y, Yamaguchi M, Akasaka K, Nakano H, Nonaka M, Amemiya S (2006) Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Dev Genes Evol 216:797–809

    CAS  PubMed  Google Scholar 

  • Hardin J (1988) The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation. Development 103:317–324

    CAS  PubMed  Google Scholar 

  • Hardin JD, Cheng LY (1986) The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev Biol 115:490–501

    Google Scholar 

  • Hardin J, McClay DR (1990) Target recognition by the archenteron during sea urchin gastrulation. Dev Biol 142:86–102

    CAS  PubMed  Google Scholar 

  • Hart MW, Johnson SL, Addison JA, Byrne M (2004) Strong character incongruence and character choice in phylogeny of sea stars of the Asterinidae. Invertebr Biol 123:343–356

    Google Scholar 

  • Heinzeller T, Welsch U (1999) The complex of notochord/neural plate in chordates and the complex hydrocoel/ectoneural cord in echinoderms- analogous or homologous? In: Candia-Carnevali MD, Bonasoro F (eds) Echinoderm research. Balkema, Rotterdam

    Google Scholar 

  • Heinzeller T, Welsch U (2001) The echinoderm nervous system and its phylogenetic interpretation. In: brain evolution and cognition. Wiley, New York

    Google Scholar 

  • Hendler G (1991) Echinodermata: Ophiuroidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, echinoderms and lophophorates, vol VI. Boxwood, Pacific Grove, pp 356–479

    Google Scholar 

  • Hendler G, Byrne M (1987) Fine structure of the dorsal arm plate of Ophiocoma wendtii – evidence for a photoreceptor system (Echinodermata, Ophiuroidea). Zoomorphology 107:261–272

    Google Scholar 

  • Hernroth B, Farahani F, Brunborg G, Dupont S, Dejmek A, Skold HN (2010) Possibility of mixed progenitor cells in sea star arm regeneration. J Exp Zool B Mol Dev Evol 314:457–468

    PubMed  Google Scholar 

  • Hinman VF, Davidson EH (2007) Evolutionary plasticity of developmental gene regulatory network architecture. Proc Natl Acad Sci U S A 104:19404–19409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinman VF, Nguyen AT, Cameron RA, Davidson EH (2003a) Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc Natl Acad Sci U S A 100:13356–13361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinman VF, Nguyen AT, Davidson EH (2003b) Expression and function of a starfish Otx ortholog, Am Otx: a conserved role for Otx proteins in endoderm development that predates divergence of the eleutherozoa. Mech Dev 120:1165–1176

    CAS  PubMed  Google Scholar 

  • Hinman VF, Yankura KA, McCauley BS (2009) Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms. Biochim Biophys Acta Gene Regul Mech 1789:326–332

    CAS  Google Scholar 

  • Hodor PG, Ettensohn CA (1998) The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Dev Biol 199:111–124

    CAS  PubMed  Google Scholar 

  • Hoekstra LA, Moroz LL, Heyland A (2012) Novel insights into the echinoderm nervous system from histaminergic and FMRFaminergic-like cells in the sea cucumber Leptosynapta clarki. PLoS One 7:e44220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holland ND (1981) Electron microscopic study of development in a sea cucumber, Stichopus tremulus (Holothuroidea), from unfertilized egg through hatched blastula. Acta Zool 62:89–111

    Google Scholar 

  • Holland ND (1991) Echinodermata: Crinoidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol VI, Echinoderms and Lophophorates. Boxwood, Pacific Groove

    Google Scholar 

  • Holm K, Dupont S, Skold H, Stenius A, Thorndyke M, Hernroth B (2008) Induced cell proliferation in putative haematopoietic tissues of the sea star, Asterias rubens (L.). J Exp Biol Part B 211:2551–2558

    Google Scholar 

  • Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407:963–970

    CAS  PubMed  Google Scholar 

  • Hörstadius SO (1939) The mechanics of sea urchin development studied by operative methods. Biol Rev 14:47

    Google Scholar 

  • Horstadius SO (1973) Experimental embryology of echinoderms. Clarendon, Oxford

    Google Scholar 

  • Hotchkiss FHC (1998) A “rays-as-appendages” model for the origin of pentamerism in echinoderms. Paleobiology 24:200–214

    Google Scholar 

  • Hotchkiss FHC (2012) Growth zones and extraxial-axial skeletal homologies in Asteroidea (Echinodermata). Proc Biol Soc Wash 125:106–121

    Google Scholar 

  • Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, Davidson EH (2006) Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev Biol 300:74–89

    CAS  PubMed  Google Scholar 

  • Huet M (1975) Le róle du système nerveux au cours de la régéneration du bras chez une étoile de mer, Asterina gibbosa Penn (Echinoderme, Astéride). J Embryol Exp Morph 33:535–552

    CAS  PubMed  Google Scholar 

  • Hylander BL, Summers RG (1982) An ultrastructural immunocytochemical localization of hyalin in the sea urchin egg. Dev Biol 93:368–380

    CAS  PubMed  Google Scholar 

  • Hyman LH (1955) The invertebrates: Echinodermata, vol IV. McGraw-Hill, New York

    Google Scholar 

  • Imai KS, Stolfi A, Levine M, Satou Y (2009) Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136:285–293

    CAS  PubMed  Google Scholar 

  • Ishimoda-Takagi T, Chino I, Sato H (1984) Evidence for the involvement of muscle tropomyosin in the contractile elements of the coelom-esophagus complex in sea urchin embryos. Dev Biol 105:365–376

    CAS  PubMed  Google Scholar 

  • Jaffe LA (1976) Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature 261:68–71

    CAS  PubMed  Google Scholar 

  • Janies D (2001) Phylogenetic relationships of extant echinoderm classes. Can J Zool 79:1232–1250

    CAS  Google Scholar 

  • Janies DA, Voight JR, Daly M (2011) Echinoderm phylogeny including Xyloplax, a progenetic asteroid. Syst Biol 60:420–438

    PubMed  Google Scholar 

  • Jefferies RPS (1968) The subphylum Calcichordata (Jefferies, 1967) primitive fossil chordates with echinoderm affinities. Bull Br Mus Nat Hist (Geol) 16:243–339

    Google Scholar 

  • Jeffery CH, Emlet RB, Littlewood DTJ (2003) Phylogeny and evolution of developmental mode in temnopleurid echinoids. Mol Phylogenet Evol 28:99–118

    CAS  PubMed  Google Scholar 

  • Ji C, Wu L, Zhao W, Wang S, Lv J (2012) Echinoderms have bilateral tendencies. PLoS One 7:e28978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juliano CE, Yajima M, Wessel GM (2010) Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo. Dev Biol 337:220–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Just EE (1919) The fertilization reaction in Echina rachnius parma I. Cortical response of egg to insemination. Biol Bull 36:1–10

    CAS  Google Scholar 

  • Kinnander H, Gustafson T (1960) Further studies on the cellular basis of gastrulation in the sea urchin larva. Exp Cell Res 19:278–290

    CAS  PubMed  Google Scholar 

  • Koga H, Morino Y, Wada H (2014) The echinoderm larval skeleton as a possible model system for experimental evolutionary biology. Genesis 52:186–192

    PubMed  Google Scholar 

  • Kohtsuka H, Nakano H (2005) Development and growth of the feather star Decametra tigrina (Crinoidea), with emphasis on the morphological differences between adults and juveniles. J Mar Biol Assoc U K 85:1503–1510

    Google Scholar 

  • Kondo M, Akasaka K (2012) Current status of echinoderm genome analysis – what do we know? Curr Genom 13:134–143

    CAS  Google Scholar 

  • Kroh A, Mooi R (2011) World echinoidea database. Available online at http://www.marinespecies.org/echinoidea. Accessed 11 Apr 2014

  • Kuraishi R, Osanai K (1992) Cell movements during gastrulation of starfish larvae. Biol Bull 183:258–268

    Google Scholar 

  • Kurokawa D, Kitajima T, Mitsunaga-Nakatsubo K, Amemiya S, Shimada H, Akasaka K (1999) HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo. Mech Dev 80:41–52

    CAS  PubMed  Google Scholar 

  • Lane MC, Koehl MA, Wilt F, Keller R (1993) A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin. Development 117:1049–1060

    CAS  PubMed  Google Scholar 

  • Lee PY, Davidson EH (2004) Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors. Gene Expr Patterns 5:161–165

    CAS  PubMed  Google Scholar 

  • Lee J, Byrne M, Uthicke S (2008) The influence of population density in fission and growth of Holothuria atra in natural mesocosms. J Exp Mar Biol Ecol 365:126–135

    Google Scholar 

  • Lepage T, Sardet C, Gache C (1992) Spatial expression of the hatching enzyme gene in the sea urchin embryo. Dev Biol 150:23–32

    CAS  PubMed  Google Scholar 

  • Levine AE, Walsh KA, Fodor EJ (1978) Evidence of an acrosin-like enzyme in sea urchin sperm. Dev Biol 63:299–306

    CAS  PubMed  Google Scholar 

  • Lhomond G, McClay DR, Gache C, Croce JC (2012) Frizzled1/2/7 signaling directs beta-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis. Development 139:816–825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li E, Cui M, Peter IS, Davidson EH (2014) Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo. Proc Natl Acad Sci U S A 111:E906–E913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Littlewood DTJ, Smith AB, Clough KA, Emson RH (1997) The interrelationships of the echinoderm classes: morphological and molecular evidence. Biol J Linn Soc 61:409–438

    Google Scholar 

  • Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389:718–721

    CAS  PubMed  Google Scholar 

  • Lowe CJ, Issel-Tarver L, Wray GA (2002) Gene expression and larval evolution: changing roles of distal-less and orthodenticle in echinoderm larvae. Evol Dev 4:111–123

    CAS  PubMed  Google Scholar 

  • Luo YJ, Su YH (2012) Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. PLoS Biol 10:e1001402

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacBride EW (1986) The development of Asterina gibbosa. Q J Microsc Sci 38:339–411

    Google Scholar 

  • Mah CL, Blake DB (2012) Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS One 7:e35644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malinda KM, Fisher GW, Ettensohn CA (1995) Four-dimensional microscopic analysis of the filopodial behavior of primary mesenchyme cells during gastrulation in the sea urchin embryo. Dev Biol 172:552–566

    CAS  PubMed  Google Scholar 

  • Mann K, Wilt FH, Poustka AJ (2010) Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Sci 8:33

    PubMed Central  PubMed  Google Scholar 

  • Martins GG, Summers RG, Morrill JB (1998) Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus. Dev Biol 198:330–342

    CAS  PubMed  Google Scholar 

  • Mashanov VS, Garcia-Arraras JE (2011) Gut regeneration in holothurians: a snapshot of recent developments. Biol Bull 221:93–109

    CAS  PubMed  Google Scholar 

  • Mashanov VS, Zueva OR, Heinzeller T (2008) Regeneration of the radial nerve cord in a holothurian: a promising new model system for studying post-traumatic recovery in the adult nervous system. Tissue Cell 40:351–372

    PubMed  Google Scholar 

  • Mashanov VS, Zueva OR, Rojas-Catagena C, Garcia-Arraras JE (2010) Visceral regeneration in a sea cucumber involves extensive expression of survivin and mortalin homologs in the mesothelium. BMC Dev Biol 10:117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mashanov VS, Zueva OR, Garcia-Arraras JE (2013) Radial glial cells play a key role in echinoderm neural regeneration. BMC Biol 11:49

    PubMed Central  PubMed  Google Scholar 

  • Materna SC, Davidson EH (2012) A comprehensive analysis of delta signaling in pre-gastrular sea urchin embryos. Dev Biol 364:77–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Materna SC, Nam J, Davidson EH (2010) High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development. Gene Expr Patterns 10:177–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mattson P (1976) Regeneration. Bobbs-Merrill, Indianapolis

    Google Scholar 

  • McCauley BS, Weideman EP, Hinman VF (2010) A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. Dev Biol 340:200–208

    CAS  PubMed  Google Scholar 

  • McCauley BS, Wright EP, Exner C, Kitazawa C, Hinman VF (2012) Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms. EvoDevo 3:17

    PubMed Central  PubMed  Google Scholar 

  • McClay DR, Gross J, Peterson R, Bradham C (2004) Mechanism of gastrulation in the Sea urchin. In: Stern C (ed) Gastrulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 123–138

    Google Scholar 

  • McEdward LR, Miner BG (2001) Larval and life-cycle patterns in echinoderms. Can J Zool 79:1125–1170

    Google Scholar 

  • McEdward LR, Jaeckle WB, Komatsu M (2002) Phylum Echinodermata: Asteroidea. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, San Diego, pp 419–503

    Google Scholar 

  • McIntyre DC, Lyons DC, Martik M, McClay DR (2014) Branching out: origins of the sea urchin larval skeleton in development and evolution. Genesis 52:173–185

    PubMed Central  PubMed  Google Scholar 

  • Minsuk SB, Raff RA (2002) Pattern formation in a pentameral animal: induction of early adult rudiment development in sea urchins. Dev Biol 247:335–350

    CAS  PubMed  Google Scholar 

  • Minsuk SB, Turner FR, Andrews ME, Raff RA (2009) Axial patterning of the pentaradial adult echinoderm body plan. Dev Genes Evol 219:89–101

    PubMed  Google Scholar 

  • Molina MD, de Crozé N, Haillot E, Lepage T (2013) Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo. Curr Opin Genet Dev 23:445–453

    Google Scholar 

  • Mooi R, David B (1997) Skeletal homologies of echinoderms. Paleontol Soc Pap 3:305–335

    Google Scholar 

  • Mooi R, David B (2000) What a new model of skeletal homologies tells us about asteroid evolution. Am Zool 40:326–339

    Google Scholar 

  • Mooi R, David B (2008) Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes. Ann Rev Ecol Evol Syst 39:43–62

    Google Scholar 

  • Mooi R, David B, Marchand D (1994) Echinoderm skeletal homologies: classical morphology meets modern phylogenetics. In: David B, Guille A, Feral JP, Roux M (eds) Echinoderms through time. Balkema, Rotterdam, pp 87–95

    Google Scholar 

  • Mooi R, David B, Wray GA (2005) Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evol Dev 7:542–555

    PubMed  Google Scholar 

  • Morris VB (1995) Apluteal development of the sea-urchin Holopneustes purpurescens Agassiz (Echinodermata, Echinoidea, Euechinoidea). Zool J Linn Soc 114:349–364

    Google Scholar 

  • Morris VB (2011) Coelomogenesis during the abbreviated development of the echinoid Heliocidaris erythrogramma and the developmental origin of the echinoderm pentameral body plan. Evol Dev 13:370–381

    PubMed  Google Scholar 

  • Morris VB (2012) Early development of coelomic structures in an echinoderm larva and a similarity with coelomic structures in a chordate embryo. Dev Genes Evol 222:313–323

    PubMed  Google Scholar 

  • Morris VB, Byrne M (2005) Involvement of two Hox genes and otx in echinoderm body-plan morphogenesis in the sea urchin Holopneustes purpurescens. J Exp Zool B Mol Dev Evol 304:456–467

    PubMed  Google Scholar 

  • Morris VB, Byrne M (2014) Oral-aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens. Dev Genes Evol 224:1–11

    CAS  PubMed  Google Scholar 

  • Morris VB, Zhao JT, Shearman DCA, Byrne M, Frommer M (2004) Expression of an Otx gene in the adult rudiment and the developing central nervous system in the vestibula larva of the sea urchin Holopneustes purpurescens. Int J Dev Biol 48:17–22

    CAS  PubMed  Google Scholar 

  • Morris VB, Selvakumaraswamy P, Whan R, Byrne M (2009) Development of the five primary podia from the coeloms of a sea star larva: homology with the echinoid echinoderms and other deuterostomes. Proc Roy Soc B 276:1277–1284

    Google Scholar 

  • Morris VB, Selvakumaraswamy P, Whan R, Byrne M (2011) The coeloms in a late brachiolaria larva of the asterinid sea star Parvulastra exigua: deriving an asteroid coelomic model. Acta Zool 92:266–275

    Google Scholar 

  • Moss C, Hunter AJ, Thorndyke MC (1998) Patterns of bromodeoxyuridine incorporation and neuropeptide immunoreactivity during arm regeneration in the starfish Asterias rubens. Philos Trans R Soc Lond B Biol Sci 353:421–436

    CAS  PubMed Central  Google Scholar 

  • Mozingo NM, Chandler DE (1991) Evidence for the existence of two assembly domains within the sea urchin fertilization envelope. Dev Biol 146:148–157

    CAS  PubMed  Google Scholar 

  • Mozzi D, Dolmatov IY, Bonasoro F, Carnevali MDC (2006) Visceral regeneration in the crinoid Antedon mediterranea: basic mechanisms, tissues and cells involved in gut regrowth. Centr Eur J Biol 1:609–635

    Google Scholar 

  • Nakajima Y, Kaneko H, Murray G, Burke RD (2004) Divergent patterns of neural development in larval echinoids and asteroids. Evol Dev 6:95–104

    PubMed  Google Scholar 

  • Nakano H, Hibino T, Oji T, Hara Y, Amemiya S (2003) Larval stages of a living sea lily (stalked crinoid echinoderm). Nature 421:158–160

    CAS  PubMed  Google Scholar 

  • Nakano H, Nakajima Y, Amemiya S (2009) Nervous system development of two crinoid species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus. Dev Genes Evol 219:565–576

    PubMed  Google Scholar 

  • Nielsen C (2006) Homology of echinoderm radial nerve cords and the chordate neural tube??? Evol Dev 8:1–2

    PubMed  Google Scholar 

  • Nielsen C, Martinez P (2003) Patterns of gene expression: homology or homocracy? Dev Genes Evol 213:149–154

    PubMed  Google Scholar 

  • Nielsen MG, Popodi E, Minsuk S, Raff RA (2003) Evolutionary convergence in Otx expression in the pentameral adult rudiment in direct-developing sea urchins. Dev Genes Evol 213:73–82

    CAS  PubMed  Google Scholar 

  • Okazaki K (1975) Spicule formation by isolated micromeres of the sea urchin embryo. Am Zool 15:567–581

    Google Scholar 

  • Oliveri P, Carrick DM, Davidson EH (2002) A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 246:209–228

    CAS  PubMed  Google Scholar 

  • Oliveri P, Walton KD, Davidson EH, McClay DR (2006) Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development 133:4173–4181

    CAS  PubMed  Google Scholar 

  • Olson RR, Cameron JL, Young CM (1993) Larval development (with observations on spawning) of the pencil urchin Phyllacanthus imperialis – a new intermediate larval form. Biol Bull 185:77–85

    Google Scholar 

  • Omori A, Akasaka K, Kurokawa D, Amemiya S (2011) Gene expression analysis of Six3, Pax6, and Otx in the early development of the stalked crinoid Metacrinus rotundus. Gene Expr Patterns GEP 11:48–56

    CAS  PubMed  Google Scholar 

  • Ortiz-Pineda PA, Ramirez-Gomez F, Perez-Ortiz J, Gonzalez-Diaz S, Santiago-De Jesus F, Hernandez-Pasos J, Del Valle-Avila C, Rojas-Cartagena C, Suarez-Castillo EC, Tossas K, Mendez-Merced AT, Roig-Lopez JL, Ortiz-Zuazaga H, Garcia-Arraras JE (2009) Gene expression profiling of intestinal regeneration in the sea cucumber. BMC Genomics 10:262

    PubMed Central  PubMed  Google Scholar 

  • Panganiban G, Irvine SM, Lowe C, Roehl H, Corley LS, Sherbon B, Grenier JK, Fallon JF, Kimble J, Walker M, Wray GA, Swalla BJ, Martindale MQ, Carroll SB (1997) The origin and evolution of animal appendages. Proc Natl Acad Sci U S A 94:5162–5166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parsley RL (1991) Review of selected North American mitrate stylophorans (Homalozoa, Echinodermata). Bull Am Paleontol 100:5–54

    Google Scholar 

  • Patruno M, McGonnell I, Graham A, Beesley P, Carnevali MDC, Thorndyke M (2003) Anbmp2/4 is a new member of the transforming growth factor-beta superfamily isolated from a crinoid and involved in regeneration. Proc Natl Acad Sci U S A 270:1341–1347

    CAS  Google Scholar 

  • Pehrson JR, Cohen LH (1986) The fate of the small micromeres in sea urchin development. Dev Biol 113:522–526

    CAS  PubMed  Google Scholar 

  • Peter IS, Davidson EH (2010) The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 340:188–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peter IS, Davidson EH (2011) A gene regulatory network controlling the embryonic specification of endoderm. Nature 474:635–639

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson KJ, Arenas-Mena C, Davidson EH (2000a) The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. Evol Dev 2:93–101

    CAS  PubMed  Google Scholar 

  • Peterson KJ, Cameron RA, Davidson EH (2000b) Bilaterian origins: significance of new experimental observations. Dev Biol 219:1–17

    CAS  PubMed  Google Scholar 

  • Pisani D, Feuda R, Peterson KJ, Smith AB (2012) Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. Mol Phylogenet Evol 62:27–34

    PubMed  Google Scholar 

  • Poustka AJ, Kuhn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G (2007) A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 8:R85

    PubMed Central  PubMed  Google Scholar 

  • Primus AE (2005) Regional specification in the early embryo of the brittle star Ophiopholis aculeata. Dev Biol 283:294–309

    CAS  PubMed  Google Scholar 

  • Raff RA (1992) Direct-developing sea urchins and the evolutionary reorganization of early development. Bioessays 14:211–218

    CAS  PubMed  Google Scholar 

  • Raff RA, Byrne M (2006) The active evolutionary lives of echinoderm larvae. Heredity 97:244–252

    CAS  PubMed  Google Scholar 

  • Raff R, Popodi EM (1996) Evolutionary approaches to analyzing development. In: Ferraris JD, Palumbi SR (eds) Molecular zoology: advances, strategies and protocols. Wiley-Liss, New York, pp 245–265

    Google Scholar 

  • Raff RA, Smith MS (2009) Axis formation and the rapid evolutionary transformation of larval form. Curr Top Dev Biol 86(86):163–190

    CAS  PubMed  Google Scholar 

  • Ramafofia C, Byrne M, Batteglene S (2003) Reproduction of the commercial sea cucumber Holothuria scabra in Solomon Islands. Mar Biol 142:281–288

    Google Scholar 

  • Ramofafia C, Byrne M, Battaglene S (2001) Reproductive biology of the intertidal sea cucumber Actinopyga mauritiana in the Solomon Islands. J Mar Biol Ass UK 81:523–531

    Google Scholar 

  • Ransick A, Davidson EH (2006) cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297:587–602

    CAS  PubMed  Google Scholar 

  • Reynolds SD, Angerer LM, Palis J, Nasir A, Angerer RC (1992) Early mRNAs, spatially restricted along the animal-vegetal axis of sea urchin embryos, include one encoding a protein related to tolloid and BMP-1. Development 114:769–786

    CAS  PubMed  Google Scholar 

  • Rizzo F, Fernandez-Serra M, Squarzoni P, Archimandritis A, Arnone MI (2006) Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). Dev Biol 300:35–48

    CAS  PubMed  Google Scholar 

  • Rojas-Cartagena C, Ortiz-Pineda P, Ramirez-Gomez F, Suarez-Castillo EC, Matos-Cruz V, Rodriguez C, Ortiz-Zuazaga H, Garcia-Arraras JE (2007) Distinct profiles of expressed sequence tags during intestinal regeneration in the sea cucumber Holothuria glaberrima. Physiol Genomics 31:203–215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rottinger E, Croce J, Lhomond G, Besnardeau L, Gache C, Lepage T (2006) Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo. Development 133:4341–4353

    CAS  PubMed  Google Scholar 

  • Rouse GW, Jermiin LS, Wilson NG, Eeckhaut I, Lanterbecq D, Oji T, Young CM, Browning T, Cisternas P, Helgen LE, Stuckey M, Messing CG (2013) Fixed, free, and fixed: the fickle phylogeny of extant Crinoidea (Echinodermata) and their permian-triassic origin. Mol Phylogenet Evol 66:161–181

    PubMed  Google Scholar 

  • Ruffins SW, Ettensohn CA (1996) A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 122:253–263

    CAS  PubMed  Google Scholar 

  • Ruta M (1999) Brief review of the stylophoran debate. Evol Dev 1:123–135

    CAS  PubMed  Google Scholar 

  • Sanchez Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Gen 7:873–884

    Google Scholar 

  • Schuel H, Schuel R (1981) A rapid sodium-dependent block to polyspermy in sea urchin eggs. Dev Biol 87:249–258

    CAS  PubMed  Google Scholar 

  • Scott LB, Lennarz WJ (1989) Structure of a major yolk glycoprotein and its processing pathway by limited proteolysis are conserved in echinoids. Dev Biol 132:91–102

    CAS  PubMed  Google Scholar 

  • Selvakumaraswamy P, Byrne M (2006) Evolution of larval form in ophiuroids: insights from the metamorphic phenotype of Ophiothrix (Echinodermata: Ophiuroidea). Evol Dev 8:183–190

    PubMed  Google Scholar 

  • Sewell MA, McEuen FS (2002) Phylum echinodermata: holothuroidea. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic, San Diego, pp 513–530

    Google Scholar 

  • Shearer MC, Fawcett JW (2001) The astrocyte/meningeal cell interface – a barrier to successful nerve regeneration? Cell Tissue Res 305:267–273

    CAS  PubMed  Google Scholar 

  • Sherwood DR, McClay DR (1999) LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126:1703–1713

    CAS  PubMed  Google Scholar 

  • Shoguchi E, Harada Y, Numakunai T, Satoh N (2000) Expression of the Otx gene in the ciliary bands during sea cucumber embryogenesis. Genesis 27:58–63

    CAS  PubMed  Google Scholar 

  • Sköld M, Rosenberg R (1996) Arm regeneration frequency in eight species of ophiuroidea (Echinodermata) from European sea areas. J Mar Res 35:353–362

    Google Scholar 

  • Sköld M, Loo L-O, Rosenberg R (1994) Production, dynamics and demography of an Amphiura filiformis population. Mar Ecol Prog Ser 103:81–90

    Google Scholar 

  • Sly BJ, Hazel JC, Popodi EM, Raff RA (2002) Patterns of gene expression in the developing adult sea urchin central nervous system reveal multiple domains and deep-seated neural pentamery. Evol Dev 4:189–204

    CAS  PubMed  Google Scholar 

  • Sly BJ, Snoke MS, Raff RA (2003) Who came first-larvae or adults? origins of bilaterian metazoan larvae. Int J Dev Biol 47(7–8):623–32

    Google Scholar 

  • Smiley S (1986) Metamorphosis of Stichopus californicus (Echinodermata, Holothuroidea) and its phylogenetic implications. Biol Bull 171:611–631

    Google Scholar 

  • Smiley S, McEuen FS, Chafee C, Krishah S (1991) Echinodermata: holothuroidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, echinoderms and lophophorates, vol VI. Boxwood, Pacific Grove, pp 664–750

    Google Scholar 

  • Smith AB (1984) Classification of the echinodermata. Palaeontology 27:431–459

    Google Scholar 

  • Smith AB (1997) Echinoderm larvae and phylogeny. Ann Rev Ecol Syst 28:219–241

    Google Scholar 

  • Smith AB (2005) The pre-radial history of echinoderms. Geol J 40:255–280

    Google Scholar 

  • Smith AB (2008) Deuterostomes in a twist: the origins of a radical new body plan. Evol Dev 10:493–503

    PubMed  Google Scholar 

  • Smith AB, Zamora S (2013) Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proc Natl Acad Sci U S A 280:1197

    Google Scholar 

  • Smith J, Kraemer E, Liu H, Theodoris C, Davidson E (2008a) A spatially dynamic cohort of regulatory genes in the endomesodermal gene network of the sea urchin embryo. Dev Biol 313:863–875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith MM, Cruz Smith L, Cameron RA, Urry LA (2008b) The larval stages of the sea urchin, Strongylocentrotus purpuratus. J Morphol 269:713–733

    PubMed  Google Scholar 

  • Smith MS, Collins S, Raff RA (2009) Morphogenetic mechanisms of coelom formation in the direct-developing sea urchin Heliocidaris erythrogramma. Dev Genes Evol 219:21–29

    PubMed  Google Scholar 

  • Smith AB, Zamora S, Alvaro JJ (2013) The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nat Commun 4:1385

    PubMed  Google Scholar 

  • Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, McClay DR, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Belle R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Geneviere AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952

    PubMed  Google Scholar 

  • Solek CM, Oliveri P, Loza-Coll M, Schrankel CS, Ho EC, Wang G, Rast JP (2013) An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes. Dev Biol 382:280–292

    CAS  PubMed  Google Scholar 

  • Stears RL, Lennarz WJ (1997) Mapping sperm binding domains on the sea urchin egg receptor for sperm. Dev Biol 187:200–208

    CAS  PubMed  Google Scholar 

  • Stohr S, O’Hara TD, Thuy B (2012) Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS One 7:e31940

    PubMed Central  PubMed  Google Scholar 

  • Strathmann RR (1985) Feeding and nonfeeding larval development and life-history evolution in marine-invertebrates. Ann Rev Ecol Syst 16:339–361

    Google Scholar 

  • Su YH, Li E, Geiss GK, Longabaugh WJR, Kramer A, Davidson EH (2009) A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Dev Biol 329:410–421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suarez-Castillo EC, Medina-Ortiz WE, Roig-Lopez JL, Garcia-Arraras JE (2004) Ependymin, a gene involved in regeneration and neuroplasticity in vertebrates, is overexpressed during regeneration in the echinoderm Holothuria glaberrima. Gene 334:133–143

    CAS  PubMed  Google Scholar 

  • Summers RG, Stricker SA, Cameron RA (1993) Applications of confocal microscopy to studies of sea urchin embryogenesis. Methods Cell Biol 38:265–287

    CAS  PubMed  Google Scholar 

  • Sumrall CD (1996) Late Paleozoic edrioasteroids (Echinodermata) from the North American Midcontinent. J Paleontol 70:969–985

    Google Scholar 

  • Sumrall CD, Wray GA (2007) Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology 33:149–163

    Google Scholar 

  • Sun L, Chen MY, Yang HS, Wang TM, Liu BZ, Shu C, Gardiner DM (2011) Large scale gene expression profiling during intestine and body wall regeneration in the sea cucumber Apostichopus japonicus. Comp Biochem Physiol Part D Genomics Proteomics 6:195–205

    PubMed  Google Scholar 

  • Sun L, Yang H, Chen M, Ma D, Lin C (2013a) RNA-Seq reveals dynamic changes of gene expression in key stages of intestine regeneration in the sea cucumber Apostichopus japonicus. PLoS One 8:e69441

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun LN, Yang HS, Chen MY, Xu DX (2013b) Cloning and expression analysis of Wnt6 and Hox6 during intestinal regeneration in the sea cucumber Apostichopus japonicus. Genet Mol Res 12:5321–5334

    CAS  PubMed  Google Scholar 

  • Sweet HC, Gehring M, Ettensohn CA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129:1945–1955

    CAS  PubMed  Google Scholar 

  • Takacs CM, Amore G, Oliveri P, Poustka AJ, Wang D, Burke RD, Peterson KJ (2004) Expression of an NK2 homeodomain gene in the apical ectoderm defines a new territory in the early sea urchin embryo. Dev Biol 269:152–164

    CAS  PubMed  Google Scholar 

  • Takata H, Kominami T (2004) Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos. Zoolog Sci 21:1025–1035

    PubMed  Google Scholar 

  • Tamboline CR, Burke RD (1992) Secondary mesenchyme of the sea urchin embryo: ontogeny of blastocoelar cells. J Exp Zool 262:51–60

    CAS  PubMed  Google Scholar 

  • Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Telford MJ, Lowe CJ, Cameron CB, Ortega-Martinez O, Aronowicz J, Oliveri P, Copley RR (2014) Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proc Biol Sci. doi:10.1098/rspb.2014.0479

    PubMed Central  PubMed  Google Scholar 

  • Thorndyke MC, Candia Carnevali MD (2001) Regeneration neurohormones and growth factors in echinoderms. Can J Zool 79:1171–1208

    CAS  Google Scholar 

  • Thorndyke MC, Patruno M, Moss C, Beesley PW (2001) Cellular and molecular bases of arm regeneration in brittlestars. In: Barker M (ed) Echinoderms 2000: New Zealand. Balkema, Rotterdam, pp 323–326

    Google Scholar 

  • Thorndyke MC, Patruno M, Dewael Y, Dupont S, Mallefet J (2003) Regeneration in the ophiuroid Amphiura filiformis: cell biology, physiology and bioluminescence. In: Feral JP, David B (eds) Echinoderm research 2001. Swets and Zeitlinger, Lisse, pp 193–199

    Google Scholar 

  • Tu Q, Cameron RA, Worley KC, Gibbs RA, Davidson EH (2012) Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis. Genome Res 22:2079–2087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turner RL (1998) The metameric echinoderm. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema, Rotterdam, p 89

    Google Scholar 

  • Ubaghs G (1975) Early paleozoic echinoderms. Ann Rev Earth Planet Sci 3:79–98

    Google Scholar 

  • Ullrich-Luter EM, Dupont S, Arboleda E, Hausen H, Arnone MI (2011) Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci U S A 108:8367–8372

    PubMed Central  PubMed  Google Scholar 

  • Uthicke S, Schaffelke B, Byrne M (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24

    Google Scholar 

  • Vacquier VD, Moy GW (1977) Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. Proc Natl Acad Sci U S A 74:2456–2460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vacquier VD, Tegner MJ, Epel D (1973) Protease released from sea urchin eggs at fertilization alters the vitelline layer and aids in preventing polyspermy. Exp Cell Res 80:111–119

    CAS  PubMed  Google Scholar 

  • Vaughn R, Garnhart N, Garey JR, Thomas WK, Livingston BT (2012) Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii. EvoDevo 3:19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vellutini BC, Migotto AE (2010) Embryonic, larval, and juvenile development of the sea biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida). PLoS One 5:e9654

    PubMed Central  PubMed  Google Scholar 

  • Vickery MC, Vickery MS, McClintock JB, Amsler CD (2001) Utilization of a novel deuterostome model for the study of regeneration genetics: molecular cloning of genes that are differentially expressed during early stages of larval sea star regeneration. Gene 262:73–80

    CAS  PubMed  Google Scholar 

  • von Ubisch L (1913) Die Entwicklung von Strongylocentrotus lividus (Echinus microtuberculatus, Arbacia pustulosa). Zeit f wiss Zool 106:409–448

    Google Scholar 

  • Warner JF, Lyons DC, McClay DR (2012) Left-right asymmetry in the sea urchin embryo: BMP and the asymmetrical origins of the adult. PLoS Biol 10:e1001404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei Z, Yaguchi J, Yaguchi S, Angerer RC, Angerer LM (2009) The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Development 136:1179–1189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V (2013) The biology of the germ line in echinoderms. Mol Reprod Dev. doi:10.1002/mrd.22223

    Google Scholar 

  • Wilkie IC (1984) Variable tensility in echinoderm collagenous tissues: a review. Mar Behav Physiol 11:1–34

    Google Scholar 

  • Wilson KA, Andrews ME, Raff RA (2005) Dissociation of expression patterns of homeodomain transcription factors in the evolution of developmental mode in the sea urchins Heliocidaris tuberculata and H. erythrogramma. Evol Dev 7:401–415

    CAS  PubMed  Google Scholar 

  • Winchell CJ, Valencia JE, Jacobs DK (2010) Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria. Dev Genes Evol 220:275–295

    PubMed Central  PubMed  Google Scholar 

  • Wolpert L, Gustafson T (1961) Studies on the cellular basis of morphogenesis of the sea urchin embryo. The formation of the blastula. Exp Cell Res 25:374–382

    CAS  PubMed  Google Scholar 

  • Woznica A, Haeussler M, Starobinska E, Jemmett J, Li Y, Mount D, Davidson B (2012) Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis. Dev Biol 368:127–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wray GA (1996) Parallel evolution of nonfeeding larvae in echinoids. Syst Biol 45:308–322

    Google Scholar 

  • Wygoda JA, Yang Y, Byrne M, Wray GA (2014) Transcriptomic analysis of the highly derived radial body plan of a sea urchin. Genome Biol Evol 6:964–973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yankura KA, Martik ML, Jennings CK, Hinman VF (2010) Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms. BMC Biol 8:143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yankura KA, Koechlein CS, Cryan AF, Cheatle A, Hinman VF (2013) Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning. Proc Natl Acad Sci U S A 110:8591–8596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshimura K, Iketani T, Motokawa T (2012) Do regular sea urchins show preference in which part of the body they orient forward in their walk? Mar Biol 159:959–965

    Google Scholar 

  • Yuh CH, Brown CT, Livi CB, Rowen L, Clarke PJ, Davidson EH (2002) Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin. Dev Biol 246:148–161

    CAS  PubMed  Google Scholar 

  • Zamora S, Rahman IA, Smith AB (2012) Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS One 7:e38296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zamora S, Lefebvre B, Alvaro JJ, Clausen S, Elicki O, Fatka O, Jell P, Kouchinsky A, Lin J-P, Nardin E, Parsley R, Rozhnov S, Sprinkle J, Sumrall CD, Vizcaïno D, Smith AB (2013) Chapter 13 Cambrian echinoderm diversity and palaeobiogeography. In: Harper DAT, Servais T (eds) Early Palaeozoic Biogeography and Palaeogeography. Geological Society of London Memoirs, Bath, pp 157–171

    Google Scholar 

  • Zukor KA, Kent DT, Odelberg SJ (2011) Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts. Neural Dev 6:1

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors of this chapter would like to acknowledge the invaluable collaboration of different people that helped us to revise the text and clarify our ideas. All took their time and sent us extensive comments on many aspects of the chapter. We would like to acknowledge, specially, the help offered by Andrew Cameron (CalTech), Chris Mah (Smithsonian, National Museum of Natural History), Valerie Morris (University of Sydney), Rich Mooi (California Academy of Sciences), Claus Nielsen (University Copenhagen), and Samuel Zamora (Universidad Zaragoza).

Also we want to express our gratitude to those that shared with us some of the pictures that are included in this chapter, in particular Koji Akasaka (School of Science, University of Tokyo), Peter Bryant (UC Irvine), Anna Czarkwiani (UC London), Paula Cisternas (University Sydney), David Dylus (UC London), Christian Gache (Observatoire Océanologique de Villefranche-sur-Mer), Veronica Hinman (Carnegie Mellon University), Hisanori Kohtsuka (Misaki Marine Biological Station, University of Tokyo), David McClay (Duke University), Hiroaki Nakano (Shimoda Marine Research Center, University of Tsukuba), Paola Oliveri (UC London), and Mattias Ormestad (SciLifeLab). Our special thanks to Santiago Valero-Medranda for the effort in preparing the many diagrams of larvae that are included in this chapter. Valerie Morris is acknowledged for providing Fig. 1.17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Arnone, M.I., Byrne, M., Martinez, P. (2015). Echinodermata. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 6. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1856-6_1

Download citation

Publish with us

Policies and ethics