Skip to main content
Log in

Fourth order phase field modeling of brittle fracture by Natural element method

  • Research
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Contrary to the second-order Phase field model (PFM) of fracture, fourth-order PFM provides a more precise representation of the crack surface by incorporating higher-order derivatives (curvature) of the phase-field order parameter in the so-called crack density functional. As a result, in a finite element setting, the weak form of the phase-field governing differential equation requires \(C^1\) continuity in the basis function. \(C^0\) Sibson interpolants or Natural element interpolants are obtained by the ratio of area traced by the second-order Voronoi cell over the first-order Voronoi cells, which is based on the natural neighbor of a nodal point set. \(C^1\) Sibson interpolants are obtained by degree elevating the evaluated \(C^0\) interpolants in the Bernstein-Bezier patch of a cubic simplex. For better computational efficiency while accounting only for the tensile part for driving fracture, a hybrid PFM is adopted. In this work, the numerical implementation of higher-order PFM with \(C^1\) Sibson interpolants along with some benchmark examples are presented to showcase the performance of this method for simulating fracture in brittle materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405

    Article  MathSciNet  Google Scholar 

  • Amiri F, Millan D, Arrayo M, Silani M, Rabczuk T (2016) Fourth order phase-field model for local max-ent approximants applied to crack propagation. Comput Methods Appl Mech Eng 312:254–275

    Article  MathSciNet  Google Scholar 

  • Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J Mech Phys Solids 57(8):1209–1229

    Article  Google Scholar 

  • Archer R (2006) \({C}^1\) continuous solutions from the green element method using overhauser elements. Appl Numer Math 56(2):222–229

    Article  MathSciNet  Google Scholar 

  • Aurenhammer F, Klein R, Der-Tsai L (2013) Voronoi Diagrams and Delaunay Triangulations. World Scientific

    Book  Google Scholar 

  • Aurojyoti P, Rajagopal A, Reddy KSS (2023) Modeling fracture in polymeric material using phase field method based on critical stretch criterion. Int J Solids Struct 270:112216

    Article  Google Scholar 

  • Barnes DC (2018) Continuously differentiable PIC shape functions for triangular meshes. J Comput Phys 362:243–263

    Article  MathSciNet  Google Scholar 

  • Behera AK, Pillai AU, Rahaman MM (2023) A phase-field model for electro-mechanical fracture with an open-source implementation of it using gridap in JULIA. Math Mech Solids 28(8):1877–1908

    Article  MathSciNet  Google Scholar 

  • Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2D LEFM problems. Eng Fract Mech 55(2):321–334

    Article  Google Scholar 

  • Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Computer Methods Appl Mech Eng 217–220:77–95

    Article  MathSciNet  Google Scholar 

  • Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118

    Article  MathSciNet  Google Scholar 

  • Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Article  MathSciNet  Google Scholar 

  • Braun J, Sambridge M (1995) A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376(6542):655–660

    Article  Google Scholar 

  • Carlsson J, Isaksson P (2020) A statistical geometry approach to length scales in phase field modeling of fracture and strength of porous microstructures. Int J Solids Struct 200–201:83–93

    Article  Google Scholar 

  • Cueto E, Calvo B, Doblaré M (2002) Modelling three-dimensional piece-wise homogeneous domains using the \(\alpha \)-shape-based Natural element method. Int J Numer Methods Eng 54(6):871–897

    Article  Google Scholar 

  • da Veiga LB, Dassi F, Russo A (2020) A \({C}^1\) virtual element method on polyhedral meshes. Comput Math Appl 79(7):1936–1955

    Article  MathSciNet  Google Scholar 

  • Duan J, Zhou S, Xia C, Xu Y (2023) A dynamic phase field model for predicting rock fracture diversity under impact loading. Int J Impact Eng 171:104376

    Article  Google Scholar 

  • Farin G (1990) Surfaces over dirichlet tessellations. Comput Aided Geomet Design 7(1–4):281–292

    Article  MathSciNet  Google Scholar 

  • Fischer P, Mergheim J, Steinmann P (2010) On the \({C}^1\) continuous discretization of non-linear gradient elasticity: A comparison of NEM and FEM based on bernstein-bézier patches. International J Numer Methods Eng 82(10):1282–1307

    Article  Google Scholar 

  • George D, Collins I, Masters I, Hossain M (2024) Extreme load analysis of flexible wave energy converters utilising nonlocal continuum damage mechanics. Appl Ocean Res 142:103843

    Article  Google Scholar 

  • Gerasimov T, De Lorenzis L (2022) Second-order phase-field formulations for anisotropic brittle fracture. Comput Methods Appl Mech Eng 389:114403

    Article  MathSciNet  Google Scholar 

  • Gonzalez D, Cueto E, Martinez MA, Doblare M (2004) Numerical integration in Natural Neighbour Galerkin Methods. Int J Numer Methods Eng 60(12):2077–2104

    Article  Google Scholar 

  • Goswami S, Anitescu C, Rabczuk T (2020) Adaptive fourth-order phase field analysis for brittle fracture. Comput Methods Appl Mech Eng 361:112808

    Article  MathSciNet  Google Scholar 

  • Hesch C, Franke M, Dittmann M, Temizer I (2016) Hierarchical NURBS and a higher-order phase-field approach to fracture for finite-deformation contact problems. Comput Methods Appl Mech Eng 301:242–258

    Article  MathSciNet  Google Scholar 

  • Hu X, Tan S, Xia D, Min L, Xu H, Yao W, Sun Z, Zhang P, Bui TQ, Zhuang X, Rabczuk T (2023) An overview of implicit and explicit phase field models for quasi-static failure processes, implementation and computational efficiency. Theo Appl Fract Mech 124:103779

    Article  Google Scholar 

  • Jain M, Kapuria S (2022) \({C}^1\)-continuous time-domain spectral finite element for modeling guided wave propagation in laminated composite strips based on third-order theory. Composite Struct 289:115442

    Article  Google Scholar 

  • Jirasék M (1998) Nonlocal models for damage and fracture: Comparison of approaches. Int J Solids Struct 35(31–32):4133–4145

    Article  MathSciNet  Google Scholar 

  • Kasirajan P, Bhattacharya S, Rajagopal A, Reddy JN (2020) Phase field modeling of fracture in quasi-brittle materials using Natural Neighbor Galerkin Method. Comput Methods Appl Mech Eng 366:113019

    Article  MathSciNet  Google Scholar 

  • Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Comput Mater Sci 108:374–384

    Article  Google Scholar 

  • Li Y, Young T, Xing C, Natarajan S (2023) Crack growth in homogeneous media using an adaptive isogeometric fourth-order phase-field model. Comput Methods Appl Mech Eng 413:116122

    Article  MathSciNet  Google Scholar 

  • Li W, Ambati M, Nguyen-Thanh N, Du H, Zhou K (2023) Adaptive fourth-order phase-field modeling of ductile fracture using an isogeometric-meshfree approach. Comput Methods Appl Mech Eng 406:115861

    Article  MathSciNet  Google Scholar 

  • Liu T, Zhi-Min L, Qiao P, Jin S (2021) A novel \({C}^1\) continuity finite element based on mindlin theory for doubly-curved laminated composite shells. Thin-Walled Struct 167:108155

    Article  Google Scholar 

  • Lopez-Pamies Bourdin O (2022) Phase-field approaches to fracture in the 3rd millennium. Int J Fract 237:1–2

    Article  Google Scholar 

  • Ma R, Sun W (2020) FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials. Comput Methods Appl Mech Eng 362:112781

    Article  MathSciNet  Google Scholar 

  • Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    Article  MathSciNet  Google Scholar 

  • Molnár G, Gravouil A (2017) 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem Anal Des 130:27–38

    Article  Google Scholar 

  • Nguyen KD, Augarde CE, Coombs WM, Nguyen-Xuan H, Abdel-Wahab M (2020) Non-conforming multipatches for NURBS-based finite element analysis of higher-order phase-field models for brittle fracture. Eng Fract Mech 235:107133

    Article  Google Scholar 

  • Nguyen KD, Cuong-Le T, Vogel F, Nguyen-Xuan H (2022) Crack propagation in quasi-brittle materials by fourth-order phase-field cohesive zone model. Theo Appl Fract Mech 118:103236

    Article  Google Scholar 

  • Nguyen-Thanh N, Li W, Huang J, Zhou K (2020) Adaptive higher-order phase-field modeling of anisotropic brittle fracture in 3D polycrystalline materials. Comput Methods Appl Mech Eng 372:113434

    Article  MathSciNet  Google Scholar 

  • Peng F, Huang W, Zhi-Qian Z, Guo TF, Ma YE, Zhang Y (2021) Conservational integrals of the fourth-order phase field model for brittle fracture via Noether theorem. Eng Fract Mech 245:107590

    Article  Google Scholar 

  • Pham KH, Ravi-Chandar K, Landis CM (2017) Experimental validation of a phase-field model for fracture. Int J Fract 205:83–101

    Article  Google Scholar 

  • Rajagopal A, Scherer M, Steinmann P, Sukumar N (2009) Smooth conformal \(\alpha \)-NEM for gradient elasticity. Int J Struct Changes Solids 1:83–109

    Google Scholar 

  • Rajagopal A, Fischer P, Kuhl E, Steinmann P (2010) Natural element analysis of the Cahn-Hilliard phase field model. Comput Mech 46(3):471–493

    Article  MathSciNet  Google Scholar 

  • Reddy KSS, Rajagopal A, Reddy JN (2021) Modeling fracture in brittle materials with inertia effects using the phase field method. Mech Adv Mater Struct 30(1):144–159

    Article  Google Scholar 

  • Shajan AM, Piska R, Natarajan S (2024) Study of mixed-mode fracture in functionally graded material using an adaptive phase-field fracture model. Composite Struct 327:117708

    Article  Google Scholar 

  • Sibson R (1980) A vector identity for the dirichlet tessellation. Math Proceed Cambridge Philos Soc 87(1):151–155

    Article  MathSciNet  Google Scholar 

  • Sukumar N, Moran B (1999) \({C}^1\) Natural neighbor interpolant for partial differential equations. Numer Methods Partial Differ Equ 15(4):417–447

    Article  Google Scholar 

  • Sukumar N, Moran B, Belytschko T (1998) The Natural element method in solid mechanics. Int J Numer Methods Eng 43(5):839–887

    Article  MathSciNet  Google Scholar 

  • Svolos L, Mourad HM, Manzini G, Garikipati K (2023) A fourth-order phase-field fracture model: Formulation and numerical solution using a continuous/discontinuous Galerkin method. J Mech Phys Solids 165:104910

    Article  MathSciNet  Google Scholar 

  • Tong-Rui L, Aldakheel F, Aliabadi MH (2024) Hydrogen assisted cracking using an efficient virtual element scheme. Comput Methods Appl Mech Eng 420:116708

    Article  MathSciNet  Google Scholar 

  • Wilson ZA, Borden MJ, Landis CM (2013) A phase-field model for fracture in piezoelectric ceramics. Int J Fract 183:135–153

    Article  Google Scholar 

  • Wu J, Wang D, Lin Z, Qi D (2020) An efficient gradient smoothing meshfree formulation for the fourth-order phase field modeling of brittle fracture. Comput Particle Mech 7:193–207

    Article  Google Scholar 

  • Yvonnet J, Chinesta F, Lorong Ph, Ryckelynck D (2005) The constrained Natural element method (C-NEM) for treating thermal models involving moving interfaces. Int J Thermal Sci 44(6):559–569

    Article  Google Scholar 

  • Zhang G, Xiang J (2020) Eight-node conforming straight-side quadrilateral element with high-order completeness (QH8-\({C}^1\)). International J Numer Methods Eng 121(15):3339–3361

    Article  MathSciNet  Google Scholar 

  • Zhou X, Wang L, Shou Y (2020) Understanding the fracture mechanism of ring brazilian disc specimens by the phase field method. Int J Fract 226:17–43

    Article  Google Scholar 

  • Zhu F, Tang H, Liu F, Zhang X (2022) Adaptive fourth-order phase field method for rock fractures using novel refinement criteria and improved data transfer operators. Comput Geotech 151:104987

  • Zhuang X, Zhou S, Huynh GD, Areias P, Rabczuk T (2022) Phase field modeling and computer implementation: A review. Eng Fract Mech 262:108234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PA: Conceptualization, Methodology, Software, Formal analysis, Writing - original draft, review, and editing. AR: Supervision, Formal analysis, Writing - review, and editing.

Corresponding author

Correspondence to P. Aurojyoti.

Ethics declarations

Declaration of Competing Interests

The authors of this manuscript declare that they do not have any financial, or non-financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

1.1 Weak form of fourth-order term

The fourth-order term in the Eq. (28) is separately written as,

$$\begin{aligned}&\frac{{\mathcal {G}}_c\ell ^3}{16} \int _{\Omega }w_\phi \nabla \cdot \nabla (\Delta \phi )~d\Omega = \frac{{\mathcal {G}}_c\ell ^3}{16} \int _{\Omega }w_\phi \varvec{J}_{PF}~d\Omega \nonumber \\&\quad \int _{\Omega }w_\phi \varvec{J}_{PF} ~d\Omega = \int _{\Omega }w_\phi \nonumber \\&\quad \left[ \frac{\partial ^4\phi }{\partial x^4}+\frac{2\partial ^4\phi }{\partial x^2\partial y^2}+\frac{\partial ^4\phi }{\partial y^4}\right] d\Omega =I_1+I_2+I_3. \end{aligned}$$
(40)

The first term is expanded as

$$\begin{aligned} I_1&= \int _{\Omega } w_\phi \frac{\partial ^4\phi }{\partial x^4} d\Omega =\oint _{\partial \Omega } w_\phi \frac{\partial ^3\phi }{\partial x^3} n_x \,dA\nonumber \\&\quad -\int _{\Omega }\frac{\partial w_\phi }{\partial x} \frac{\partial ^3\phi }{\partial x^3}\,d\Omega \nonumber \\&=\oint _{\partial \Omega } w_\phi \frac{\partial ^3\phi }{\partial x^3} n_x \,dA-\oint _{\partial \Omega }\frac{\partial w_\phi }{\partial x} \frac{\partial ^2\phi }{\partial x^2} n_x\,dA\nonumber \\&\quad +\int _{\Omega }\frac{\partial ^2w_\phi }{\partial x^2} \frac{\partial ^2\phi }{\partial x^2}\,d\Omega . \end{aligned}$$
(41)

The third term is expanded as

$$\begin{aligned}&I_3= \int _{\Omega }w_\phi \frac{\partial ^4\phi }{\partial y^4} d\Omega =\oint _{\partial \Omega } w_\phi \frac{\partial ^3\phi }{\partial y^3} n_y \,dA\nonumber \\&\quad -\int _{\Omega }\frac{\partial w_\phi }{\partial y} \frac{\partial ^3\phi }{\partial y^3}\,d\Omega \nonumber \\&\quad =\oint _{\partial \Omega } w_\phi \frac{\partial ^3\phi }{\partial y^3} n_y \,dA-\oint _{\partial \Omega }\frac{\partial w_\phi }{\partial y} \frac{\partial ^2\phi }{\partial y^2} n_y\,dA\nonumber \\&\quad +\int _{\Omega }\frac{\partial ^2 w_\phi }{\partial y^2} \frac{\partial ^2\phi }{\partial y^2}\,d\Omega . \end{aligned}$$
(42)

The second term is expanded as

$$\begin{aligned} I_2&= \int _{\Omega }w_\phi \frac{2\partial ^4\phi }{\partial x^2\partial y^2} d\Omega =\oint _{\partial \Omega } w_\phi \frac{\partial ^3\phi }{\partial x\partial y^2} n_x\,dA\nonumber \\&\quad +\oint _{\partial \Omega } w_\phi \frac{\partial ^3\phi }{\partial y\partial x^2} n_y\,dA\nonumber \\&\quad -\int _{\Omega }\frac{\partial w_\phi }{\partial x} \frac{\partial ^3\phi }{\partial x\partial y^2}\,d\Omega -\int _{\Omega }\frac{\partial w_\phi }{\partial y} \frac{\partial ^3\phi }{\partial y\partial x^2}\,d\Omega . \end{aligned}$$
(43)
$$\begin{aligned}&=\oint _{\partial \Omega } w_\phi \frac{\partial ^3\phi }{\partial x\partial y^2} n_x\,dA+\oint _{\partial \Omega } w_\phi \frac{\partial ^3\phi }{\partial y\partial x^2} n_y\,dA\nonumber \\&\quad - \oint _{\partial \Omega } \frac{\partial w_\phi }{\partial y} \frac{\partial ^2\phi }{\partial x\partial y} n_y\,dA -\oint _{\partial \Omega } \frac{\partial w_\phi }{\partial x} \frac{\partial ^2\phi }{\partial x\partial y} n_x\,dA\nonumber \\&\quad +\int _{\Omega }2\frac{\partial ^2w_\phi }{\partial x\partial y} \frac{\partial ^2\phi }{\partial x\partial y}\,d\Omega . \end{aligned}$$
(44)

1.2 Crack modeled numerically for the asymmetric bending test

The modeling of the initial crack/notch is carried out numerically by enforcing it either by making the phase field (\(\phi \)) to be one on those nodal values or by specifying significantly higher strain-history (\({\mathcal {H}}^+=10^3\)) value (present approach). This approach of modeling the crack certainly does not represent the correct way of geometric discontinuity, as well as it is represented by the physical crack.

It is observed that when the initial notch is modeled numerically [Fig. 26], the crack path deviates from the experimental observation (after reaching the first hole). But in the case of a physical notch, the crack pattern matches with the experiment (Bittencourt et al. 1996). This may be attributed to the fact that, when the crack is modeled numerically, it has more residual stiffness than when it is modeled physically. Another factor that contributes to this disparity could be the effective width of the initial notch (when modeled numerically) than when it is modeled physically.

Fig. 26
figure 26

Crack pattern for asymmetrically notched three-point bending test (\(a=5.0\) mm, \(b=1.5\) mm). The initial notch is modeled numerically. Figure a, b, and c represent crack patterns at different load steps

In the case of an initial physical crack geometry, the crack evolution is obtained by only solving the two governing equations, and no numerical enforcement is required for the initial crack. However, while dealing with it numerically, the phase field (\(\phi =1\)) is enforced as nodal values or linearly varying history functions (\({\mathcal {H}}^+=10^3\), which is a pure assumption) at the initial crack location at every time step inside the solver. This somewhat limits the pure variational nature of the phase field formulation. Because of this, while numerical modeling predicts the crack pattern in simple geometry effectively, it deviates from the original crack trajectory in somewhat complex geometry and initial crack locations. The phase field method is based on variational theory and the pure energy minimization principle, making it robust and very efficient in various complex crack trajectories. However, defining the initial discontinuity/ notch numerically (Defining high history value) may not be the best practice while using PFM. It may be an efficient way for the crack representation in 3D geometry where defining geometric discontinuity is not feasible and when meshless methods are used for numerical approximations (Borden et al. 2012).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aurojyoti, P., Rajagopal, A. Fourth order phase field modeling of brittle fracture by Natural element method. Int J Fract (2024). https://doi.org/10.1007/s10704-024-00773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10704-024-00773-8

Keywords

Navigation