Skip to main content
Log in

A computational meshfree RPIM approach for phase-field modeling of brittle fracture

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Modeling failure mechanisms in solids by using sharp crack discontinuities suffers various shortcomings that can be diminished by diffusive crack conception or phase-field method. The phase-field method describes sharp crack surfaces with a continuous field variable evaluated through a differential evolution equation. This study deals with the discretization and solution of equilibrium and crack evolution equations by the meshless radial point interpolation method (RPIM). A simple equation is proposed to evaluate the average distance between the field nodes distributed/scattered non-uniformly in the solution domain. A novel meshless scheme is proposed to select the field nodes around the quadrature points placed near the crack tip. A modified Newton–Raphson method is applied to restore the iterative convergence of the proposed method. Error analysis of the developed RPIM is carried out, and the RPIM results are compared with finite element method (FEM). The model verification is performed through four well-known benchmark tests, and the computed results are then compared with the solutions reported in the literature or derived from FEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J., Landis, C.M.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217, 77–95 (2012)

    Article  MathSciNet  Google Scholar 

  2. Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Meth. Eng. 40(4), 727–758 (1997)

    Article  MathSciNet  Google Scholar 

  3. Ambati, M., Gerasimov, T., De Lorenzis, L.: A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 55(2), 383–405 (2015)

    Article  MathSciNet  Google Scholar 

  4. Wilson, Z.A., Landis, C.M.: Phase-field modeling of hydraulic fracture. J. Mech. Phys. Solids 96, 264–290 (2016)

    Article  MathSciNet  Google Scholar 

  5. Zhou, S., Zhuang, X., Zhu, H., Rabczuk, T.: Phase field modelling of crack propagation, branching and coalescence in rocks. Theoret. Appl. Fract. Mech. 96, 174–192 (2018)

    Article  Google Scholar 

  6. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  Google Scholar 

  7. Bourdin, B., Francfort, G.A., Marigo, J.-J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  MathSciNet  Google Scholar 

  8. Kuhn, C., Müller, R.: A new finite element technique for a phase field model of brittle fracture. J. Theor. Appl. Mech. 49(4), 1115–1133 (2011)

    Google Scholar 

  9. Amor, H., Marigo, J.-J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)

    Article  Google Scholar 

  10. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field Fe implementations. Int. J. Numer. Meth. Eng. 83(10), 1273–1311 (2010)

    Article  MathSciNet  Google Scholar 

  11. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45–48), 2765–2778 (2010)

    Article  MathSciNet  Google Scholar 

  12. Nguyen, T.-T., Waldmann, D., Bui, T.Q.: Role of interfacial transition zone in phase field modeling of fracture in layered heterogeneous structures. J. Comput. Phys. 386, 585–610 (2019)

    Article  MathSciNet  Google Scholar 

  13. Nguyen, T.-T., Waldmann, D., Bui, T.Q.: Computational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials. Comput. Methods Appl. Mech. Eng. 348, 1–28 (2019)

    Article  MathSciNet  Google Scholar 

  14. Bleyer, J., Alessi, R.: Phase-field modeling of anisotropic brittle fracture including several damage mechanisms. Comput. Methods Appl. Mech. Eng. 336, 213–236 (2018)

    Article  MathSciNet  Google Scholar 

  15. Tao, Z., Li, X., Tao, S., Chen, Z.: Phase-field modeling of 3D fracture in elasto-plastic solids based on the modified GTN theory. Eng. Fract. Mech. 260, 108196 (2022)

    Article  Google Scholar 

  16. Zhang, G., Guo, T.F., Elkhodary, K.I., Tang, S., Guo, X.: Mixed Graph-FEM phase field modeling of fracture in plates and shells with nonlinearly elastic solids. Comput. Methods Appl. Mech. Eng. 389, 114282 (2022)

    Article  MathSciNet  Google Scholar 

  17. Cheng, P., Zhu, H., Zhang, Y., Jiao, Y., Fish, J.: Coupled thermo-hydro-mechanical-phase field modeling for fire-induced spalling in concrete. Comput. Methods Appl. Mech. Eng. 389, 114327 (2022)

    Article  MathSciNet  Google Scholar 

  18. Weinberg, K., Wieners, C.: Dynamic phase-field fracture with a first-order discontinuous Galerkin method for elastic waves. Comput. Methods Appl. Mech. Eng. 389, 114330 (2022)

    Article  MathSciNet  Google Scholar 

  19. Farahani, B.V., Belinha, J., Pires, F.A., Ferreira, A.J., Moreira, P.: Extending a radial point interpolation meshless method to non-local constitutive damage models. Theoret. Appl. Fract. Mech. 85, 84–98 (2016)

    Article  Google Scholar 

  20. Belinha, J.: Meshless methods in biomechanics. Lecture Notes Comput. Vis. Biomech. 16, 320 (2014)

    MathSciNet  Google Scholar 

  21. Belytschko, T., Lu, Y., Gu, L., Tabbara, M.: Element-free Galerkin methods for static and dynamic fracture. Int. J. Solids Struct. 32(17–18), 2547–2570 (1995)

    Article  Google Scholar 

  22. Assari, P., Adibi, H., Dehghan, M.: A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J. Comput. Appl. Math. 267, 160–181 (2014)

    Article  MathSciNet  Google Scholar 

  23. Mirzaei, D., Dehghan, M.: Meshless local Petrov–Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation. J. Comput. Appl. Math. 233(10), 2737–2754 (2010)

    Article  MathSciNet  Google Scholar 

  24. Abbasbandy, S., Ghehsareh, H.R., Hashim, I.: Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function. Eng. Anal. Bound. Elem. 36(12), 1811–1818 (2012)

    Article  MathSciNet  Google Scholar 

  25. Shirzadi, A., Ling, L., Abbasbandy, S.: Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations. Eng. Anal. Bound. Elem. 36(11), 1522–1527 (2012)

    Article  MathSciNet  Google Scholar 

  26. Shirzadi, A., Sladek, V., Sladek, J.: A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation. Eng. Anal. Bound. Elem. 37(1), 8–14 (2013)

    Article  MathSciNet  Google Scholar 

  27. Shivanian, E.: A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng. Anal. Bound. Elem. 54, 1–12 (2015)

    Article  MathSciNet  Google Scholar 

  28. Atluri, S., Zhu, T.-L.: The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech. 25(2–3), 169–179 (2000)

    Article  Google Scholar 

  29. Fu, Z.-J., Chen, W., Yang, H.-T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)

    Article  MathSciNet  Google Scholar 

  30. Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10(5), 307–318 (1992)

    Article  MathSciNet  Google Scholar 

  31. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Meth. Fluids 20(8–9), 1081–1106 (1995)

    Article  MathSciNet  Google Scholar 

  32. Gu, Y., Wang, W., Zhang, L., Feng, X.-Q.: An enriched radial point interpolation method (E-RPIM) for analysis of crack tip fields. Eng. Fract. Mech. 78(1), 175–190 (2011)

    Article  Google Scholar 

  33. Farahani, B.V., Tavares, P.J., Moreira, P., Belinha, J.: Stress intensity factor calculation through thermoelastic stress analysis, finite element and RPIM meshless method. Eng. Fract. Mech. 183, 66–78 (2017)

    Article  Google Scholar 

  34. Ramalho, L., Belinha, J., Campilho, R.: The numerical simulation of crack propagation using radial point interpolation meshless methods. Eng. Anal. Bound. Elem. 109, 187–198 (2019)

    Article  MathSciNet  Google Scholar 

  35. Hamidpour, M., Nami, M.R., Khosravifard, A., Lévesque, M.: Modeling fracture in viscoelastic materials using a modified incremental meshfree RPIM and DIC technique. Eur. J. Mech.-A/Solids 92, 104456 (2022)

    Article  MathSciNet  Google Scholar 

  36. Gonçalves, D., Sánchez-Arce, I., Ramalho, L., Campilho, R., Belinha, J.: A meshless analysis of mode i fracture propagation in adhesive joints with experimental validation. Eng. Anal. Bound. Elem. 146, 119–131 (2023)

    Article  MathSciNet  Google Scholar 

  37. Novelli, L., Gori, L., da Silva Pitangueira, R. L.: Phase-field modelling of brittle fracture with smoothed radial point interpolation methods. Eng. Anal. Bound. Elem. 138, 219–234 (2022)

    Article  MathSciNet  Google Scholar 

  38. Bui, T.Q., Nguyen, N.T., Le, V.L., Nguyen, M.N., Truong, T.T.: Analysis of transient dynamic fracture parameters of cracked functionally graded composites by improved meshfree methods. Theoret. Appl. Fract. Mech. 96, 642–657 (2018)

    Article  Google Scholar 

  39. Vu, T.-V., Nguyen, N.-H., Khosravifard, A., Hematiyan, M., Tanaka, S., Bui, T.Q.: A simple FSDT-based meshfree method for analysis of functionally graded plates. Eng. Anal. Boundary Elem. 79, 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  40. Liu, G.-R., Gu, Y.-T.: An Introduction to Meshfree Methods and their Programming. Springer Science & Business Media, Cham (2005)

    Google Scholar 

  41. Ferreira, A.J., Kansa, E.J., Fasshauer, G.E., Leitão, V.: Progress on Meshless Methods. Springer, Cham (2009)

    Book  Google Scholar 

  42. Aldakheel, F., Hudobivnik, B., Hussein, A., Wriggers, P.: Phase-field modeling of brittle fracture using an efficient virtual element scheme. Comput. Methods Appl. Mech. Eng. 341, 443–466 (2018)

    Article  MathSciNet  Google Scholar 

  43. Sargado, J.M., Keilegavlen, E., Berre, I., Nordbotten, J.M.: High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. J. Mech. Phys. Solids 111, 458–489 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minh Ngoc Nguyen or Tinh Quoc Bui.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberi, H., Nguyen, C.T., Saberi, H. et al. A computational meshfree RPIM approach for phase-field modeling of brittle fracture. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03911-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03911-4

Navigation