Skip to main content
Log in

A dynamic coupling model of peridynamics and finite elements for progressive damage analysis

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This study presents a new coupling model (CM) of finite element (FE) and peridynamics (PD), in which only very few PD nodes exist. In the coupling model, PD subregion is directly coupled with FE subregion without an overlapped zone, and the force is transferred between PD nodes and finite elements by a connection stiffness matrix. Since dynamic transformation technique is implemented, PD subregion is adaptively generated and evolved, and ensure that the whole damage process is completed. In addition, as an optimization of the coupling model, a densified-material-point model (DMPM) is achieved, which can remove the limitation of element type and enhance the flexibility of the coupling model. As a result, the computational efficiency of coupling algorithms will be greatly improved, and numerical error can be overcome in inferring the damage region. The capability of the developed coupling model was demonstrated by the stretch examples of plates with different discrete cases, and damage analysis was further conducted to demonstrate the strong capability of the DMPM in capturing failure mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  MATH  Google Scholar 

  • Bobaru F, Foster JT, Geubelle PH, Silling SA (2016) Handbook of peridynamic modeling. Crc Press, Boca Raton

    Book  MATH  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938

    Article  MATH  Google Scholar 

  • Cheng Z, Zhang G, Wang Y, Bobaru F (2015) A peridynamic model for dynamic fracture in functionally graded materials. Compos Struct 133:529–546

    Article  Google Scholar 

  • Galvanetto U, Mudric T, Shojaei A, Zaccariotto M (2016) An effective way to couple FEM meshes and peridynamics grids for the solution of static equilibrium problems. Mech Res Commum 76:41–47

    Article  Google Scholar 

  • Gao Y, Oterkus S (2019) Fully coupled thermomechanical analysis of laminated composites by using ordinary state based peridynamic theory. Compos Struct 207:397–424

    Article  Google Scholar 

  • Hu YL, Yu Y, Wang H (2014) Peridynamic analytical method for progressive damage in notched composite laminates. Compos Struct 108:801–810

    Article  Google Scholar 

  • Hu YL, Carvalho N, Madenci E (2015) Peridynamic modeling of delamination growth in composite laminates. Compos Struct 132:610–620

    Article  Google Scholar 

  • Jin Y, Li L, Jia Y et al (2021) Numerical study of shrinkage and heating induced cracking in concrete materials and influence of inclusion stiffness with peridynamics method. Comput Geotech 133:103998

    Article  Google Scholar 

  • Jooeun L, Liu W, Hong JW (2016) Impact fracture analysis enhanced by contact of peridynamic and finite element formulations. Int J Impact Eng 87:108–119

    Article  Google Scholar 

  • Kilic B, Madenci E (2009) Coupling of peridynamic theory and finite element method. J Mech Mater Struct 5:707–733

    Article  Google Scholar 

  • Liu W, Hong JW (2012) A coupling approach of discretized peridynamics with finite element method. Comput Methods Appl Mech Engrg 245–246:163–175

    Article  MathSciNet  MATH  Google Scholar 

  • Liu S, Fang G et al (2021) A coupling method of non-ordinary state-based peridynamics and finite element method. Eur J Mech A-Solid 85:104075

    Article  MathSciNet  MATH  Google Scholar 

  • Liu S, Fang G, Liang J et al (2021) Study of three-dimensional Euler-Bernoulli beam structures using element-based peridynamic model. Eur J Mech A-Solid 86:104186

    Article  MathSciNet  MATH  Google Scholar 

  • Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178

    Article  MathSciNet  Google Scholar 

  • Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, New York

    Book  MATH  Google Scholar 

  • Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Engrg 199(45–48):2765–2778

    Article  MathSciNet  MATH  Google Scholar 

  • Ni T, Zaccariotto M, Zhu QZ et al (2019) Static solution of crack propagation problems in peridynamics. Comput Methods Appl Mech Engrg 346:126–151

    Article  MathSciNet  MATH  Google Scholar 

  • Ni T, Pesavento F et al (2020) Hybrid FEM and Peridynamic simulation of hydraulic fracture propagation in saturated porous media. Comput Methods Appl Mech Engrg 366:113101

    Article  MathSciNet  MATH  Google Scholar 

  • Ni T, Pesavento F, Zaccariotto M et al (2021) Numerical simulation of forerunning fracture in saturated porous solids with hybrid FEM/Peridynamic model. Comput Geotech 133:104024

    Article  Google Scholar 

  • Nooru-Mohamed MB, Schlangen E et al (1993) Experimental and numerical study on the behavior of concrete subjected to biaxial tension and shear. Adv Cem Bas Mater 1:22–37

    Article  Google Scholar 

  • Ožbolt J, Sharma A (2012) Numerical simulation of dynamic fracture of concrete through uniaxial tension and L-specimen. Eng Fract Mech 85:88–102

    Article  Google Scholar 

  • Ožbolt J, Bede N, Sharma A, Mayer U (2015) Dynamic fracture of concrete L-specimen: experimental and numerical study. Eng Fract Mech 148:27–41

    Article  Google Scholar 

  • Qin M, Yang D, Chen W, Yang S (2021) Hydraulic fracturing model of a layered rock mass based on peridynamics. Eng Fract Mech 258:108088

    Article  Google Scholar 

  • Roth SN, Léger P, Soulaïmani A (2015) A combined XFEM-damage mechanics approach for concrete crack propagation. Comput Methods Appl Mech Eng 283:923–955

    Article  MathSciNet  MATH  Google Scholar 

  • Shen F, Yu Y, Zhang Q et al (2020) Hybrid model of peridynamics and finite element method for static elastic deformation and brittle fracture analysis. Eng Anal Bound Elem 113:17–25

    Article  MathSciNet  MATH  Google Scholar 

  • Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  MathSciNet  MATH  Google Scholar 

  • Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 3:1526–1535

    Article  Google Scholar 

  • Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non Linear Mech 40(2):395–409

    Article  MATH  Google Scholar 

  • Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168

    Article  Google Scholar 

  • Wang Y, Waisman H (2016) From diffuse damage to sharp cohesive cracks: a coupled XFEM framework for failure analysis of quasi-brittle materials. Comput Methods Appl Mech Eng 299:57–89

    Article  MathSciNet  MATH  Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  MATH  Google Scholar 

  • Yaghoobi A, Chorzepa MG (2017) Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework. Eng Fract Mech 169:238–250

    Article  Google Scholar 

  • Yang D, He X, Yi S et al (2020a) Coupling of peridynamics with finite elements for brittle crack propagation problems. Theor Appl Fract Mec 107:102505

    Article  Google Scholar 

  • Yang D, He X, Liu X et al (2020b) A peridynamics-based cohesive zone model (PD-CZM) for predicting cohesive crack propagation. Int J Mech Sci 184:105830

    Article  Google Scholar 

  • Yang D, He X, Zhu J, Bie Z (2021) A novel damage model in the peridynamics-based cohesive zone method (PD-CZM) for mixed mode fracture with its implicit implementation. Comput Methods Appl Mech Eng 377:113721

    Article  MathSciNet  MATH  Google Scholar 

  • Zaccariotto M, Tomas D, Galvanetto U (2017) An enhanced coupling of PD grids to FE meshes. Mech Res Commun 84:125–135

    Article  Google Scholar 

  • Zaccariotto M, Mudric T et al (2018) Coupling of FEM meshes with peridynamic grids. Comput Methods Appl Mech Eng 330:471–497

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Lackner R, Zeiml M, Mang HA (2015) Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack-tracking strategy, and validations. Comput Methods Appl Mech Eng 287:335–366

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou Z, Li Z, Gao C et al (2021) Peridynamic micro-elastoplastic constitutive model and its application in the failure analysis of rock masses. Comput Geotech 132:104037

    Article  Google Scholar 

  • Zi C, Belytschko T (2003) New crack-tip elements for XFEM and applications to cohesive cracks. Int J Num Methods Eng 57:2221–2240

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weicheng Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The element stiffness matrix for quadrilateral elements can be expressed as

$$ \left[ {\mathbf{K}} \right] = \int_{ - 1}^{1} {\int_{ - 1}^{1} {\left[ {\mathbf{B}} \right]^{T} \left[ {\mathbf{D}} \right]\left[ {\mathbf{B}} \right]t\left| {\mathbf{J}} \right|d\xi d\eta } } $$
(66)

where \(\left[ {\mathbf{B}} \right]\) is the strain matrix, \(\left[ {\mathbf{D}} \right]\) is the elastic matrix, \(\left[ {\mathbf{J}} \right]\) is the Jacobian matrix, and t is the thickness of the plate. \((\xi ,\eta )\) is the local coordinate, as shown in Fig. 

Fig. 36
figure 36

Quadrilateral elements in different coordinate systems. a Global coordinate system; b local coordinate system

36.

$$ \left[ {\mathbf{B}} \right] = \left[ {\begin{array}{*{20}c} {B_{1} } & {B_{2} } & {B_{3} } & {B_{4} } \\ \end{array} } \right] $$
(67)

Each sub-block of the strain matrix and the elastic matrix can be written as

$$ \left[ {B_{i} } \right] = \left[ {\begin{array}{*{20}c} {\frac{{\partial N_{i} }}{\partial x}} & 0 \\ 0 & {\frac{{\partial N_{i} }}{\partial y}} \\ {\frac{{\partial N_{i} }}{\partial y}} & {\frac{{\partial N_{i} }}{\partial x}} \\ \end{array} } \right];\,\left[ {\text{D}} \right] = \left[ {\begin{array}{*{20}c} {\frac{E}{{1 - v^{2} }}} & {\frac{vE}{{1 - v^{2} }}} & 0 \\ {\frac{vE}{{1 - v^{2} }}} & {\frac{E}{{1 - v^{2} }}} & 0 \\ 0 & 0 & {\frac{E}{2(1 + v)}} \\ \end{array} } \right] $$
(68)

where the determinant of \(\left[ {\mathbf{J}} \right]\) can be expressed as

$$ \left| J \right| = \left| {\begin{array}{*{20}c} {\sum\limits_{i = 1}^{4} {\frac{{\partial N_{i} }}{\partial \xi }x_{i} } } & {\sum\limits_{i = 1}^{4} {\frac{{\partial N_{i} }}{\partial \xi }y_{i} } } \\ {\sum\limits_{i = 1}^{4} {\frac{{\partial N_{i} }}{\partial \eta }x_{i} } } & {\sum\limits_{i = 1}^{4} {\frac{{\partial N_{i} }}{\partial \eta }y_{i} } } \\ \end{array} } \right| $$
(69)

where \(N_{i}\) represents the shape function and its expression can be obtained as

$$ N_{i} \left( {\xi ,\eta } \right) = \frac{{\left( {1 + \xi_{i} \xi } \right)\left( {1 + \eta_{i} \eta } \right)}}{4}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {i = 1,2,3,4} \right) $$
(70)

where \((x_{i} ,y_{i} )\) and \((\xi_{i} ,\eta_{i} )\) represent the coordinate of element node i in reference to the global coordinate system and the local coordinate system, respectively.

$$ \begin{array}{*{20}l} {\left( {\xi_{1} ,\,\eta_{1} } \right) = \left( { - 1,\,1} \right)} \hfill \\ {\left( {\xi_{3} ,\,\eta_{3} } \right) = \left( {1,\, - 1} \right)} \hfill \\ \end{array} ,\,\begin{array}{*{20}l} {\left( {\xi_{2} ,\,\eta_{2} } \right) = \left( { - 1,\, - 1} \right)} \hfill \\ {\left( {\xi_{4} ,\,\eta_{4} } \right) = \left( {1,\,1} \right)} \hfill \\ \end{array} $$
(71)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Gao, W., Liu, W. et al. A dynamic coupling model of peridynamics and finite elements for progressive damage analysis. Int J Fract 241, 27–52 (2023). https://doi.org/10.1007/s10704-022-00687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-022-00687-3

Keywords

Navigation