Skip to main content
Log in

Recent developments in dynamic fracture: some perspectives

  • Special Invited Article Celebrating IJF at 50
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

We briefly review a number of important recent experimental and theoretical developments in the field of dynamic fracture. Topics include experimental validation of the equations of motion for straight tensile cracks (in both infinite media and strip geometries), validation of a new theoretical description of the near-tip fields of dynamic cracks incorporating weak elastic nonlinearities, a new understanding of dynamic instabilities of tensile cracks in both 2D and 3D, crack front dynamics, and the relation between frictional motion and dynamic shear cracks. Related future research directions are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adda-Bedia M, Arias R, Ben-Amar M, Lund F (1999) Dynamic instability of brittle fracture. Phys Rev Lett 82(11):2314–2317

  • Adda-Bedia M (2005) Brittle fracture dynamics with arbitrary paths III. The branching instability under general loading. J Mech Phys Solids 53(1):227–248

    Article  Google Scholar 

  • Adda-Bedia M, Arias RE, Bouchbinder E, Katzav E (2013) Dynamic stability of crack fronts: out-of-plane corrugations. Phys Rev Lett 110(1):014302

    Article  Google Scholar 

  • Adda-Bedia M, Pomeau Y (1995) Crack instabilities in a heated glass strip. Phys Rev E 52:4105–4113

    Article  Google Scholar 

  • Ampuero JP, Rubin AM (2008) Earthquake nucleation on rate and state faults aging and slip laws. J Geophys Res 113(B1):B01302

    Google Scholar 

  • Andrews DJ (1976) Rupture velocity of plane strain shear cracks. J Geophys Res Solid Earth 81:5679–5687

    Article  Google Scholar 

  • Aranson IS, Kalatsky VA, Vinokur VM (2000) Continuum field description of crack propagation. Phys Rev Lett 85(1):118–121

    Article  Google Scholar 

  • Atrash F, Sherman D (2012) Dynamic fracture instabilities in brittle crystals generated by thermal phonon emission: experiments and atomistic calculations. J Mech Phys Solids 60(5):844–856

    Article  Google Scholar 

  • Bar Sinai Y, Brener EA, Bouchbinder E (2012) Slow rupture of frictional interfaces. Geophys Res Lett 39:L03308

  • Bar-Sinai Y, Spatschek R, Brener EA, Bouchbinder E (2013) Instabilities at frictional interfaces: creep patches, nucleation, and rupture fronts. Phys Rev E 88(6):060403

    Article  Google Scholar 

  • Bar-Sinai Y, Spatschek R, Brener EA, Bouchbinder E (2014) On the velocity-strengthening behavior of dry friction. J Geophys Res Solid Earth 119(3):1738–1748

    Article  Google Scholar 

  • Bar-Sinai Y, Spatschek R, Brener EA, Bouchbinder E (2015) Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation. Sci Rep 5:7841

    Article  Google Scholar 

  • Baumberger T, Caroli C, Ronsin O (2002) Self-healing slip pulses along a gel/glass interface. Phys Rev Lett 88:075509

    Article  Google Scholar 

  • Baumberger T, Caroli C, Ronsin O (2003) Self-healing slip pulses and the friction of gelatin gels. Eur Phys J E 11(1):85–93

    Article  Google Scholar 

  • Baumberger T, Caroli C, Martina D (2006) Solvent control of crack dynamics in a reversible hydrogel. Nat Mater 5(7):552–555

    Article  Google Scholar 

  • Baumberger T, Caroli C, Martina D, Ronsin O (2008) Magic angles and cross-hatching instability in hydrogel fracture. Phys Rev Lett 100:178303

    Article  Google Scholar 

  • Baumberger T, Caroli C (2006) Solid friction from stick-slip down to pinning and aging. Adv Phys 55(3–4):279–348

    Article  Google Scholar 

  • Baumberger T, Ronsin O (2010) A convective instability mechanism for quasistatic crack branching in a hydrogel. Eur Phys J E 31(1):51–58

    Article  Google Scholar 

  • Ben-David O, Cohen G, Fineberg J (2010) The dynamics of the onset of frictional slip. Science 330(6001):211–214

    Article  Google Scholar 

  • Ben-David O, Fineberg J (2011) Static friction coefficient is not a material constant. Phys Rev Lett 106(25):254301

    Article  Google Scholar 

  • Ben-Zion Y (2001) Dynamic ruptures in recent models of earthquake faults. J Mech Phys Solids 49(9):2209–2244

    Article  Google Scholar 

  • Ben-Zion Y (2008) Collective behavior of earthquakes and faults: continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Rev Geophys 46(4):RG4006

    Article  Google Scholar 

  • Ben-Zion Y, Andrews DJ (1998) Properties and implications of dynamic rupture along a material interface. Bull Seismol Soc Am 88:1085–1094

    Google Scholar 

  • Ben-Zion Y, Rice JR (1997) Dynamic simulations of slip on a smooth fault in an elastic solid. J Geophys Res 102(B8):17771

    Article  Google Scholar 

  • Ben-Zion Y, Sammis CG (2003) Characterization of fault zones. Pure Appl Geophys 160(3–4):677–715

    Article  Google Scholar 

  • Bergkvist H (1974) Some experiments on crack motion and arrest in polymethylmethacrylate. Eng Fract Mech 6:621–626

    Article  Google Scholar 

  • Beroza GC, Ide S (2011) Slow earthquakes and nonvolcanic tremor. Annu Rev Earth Planet Sci 39:271–296

    Article  Google Scholar 

  • Bhat HS, Dmowska R, King GCP, Klinger Y, Rice JR (2007) Off-fault damage patterns due to supershear ruptures with application to the 2001 M-w 8.1 Kokoxili (Kunlun) Tibet earthquake. J Geophys Res Solid Earth 112(B6):B06301

    Article  Google Scholar 

  • Bonamy D, Bouchaud E (2011) Failure of heterogeneous materials: a dynamic phase transition? Phys Rep Rev Sect Phys Lett 498(1):1–44

    Google Scholar 

  • Bonamy D, Ravi-Chandar K (2003) Interaction of shear waves and propagating cracks. Phys Rev Lett 91(23):235502

    Article  Google Scholar 

  • Bouchaud E, Bouchaud JP, Fisher DS, Ramanathan S, Rice JR (2002) Can crack front waves explain the roughness of cracks? J Mech Phys Solids 50(8):1703–1725

    Article  Google Scholar 

  • Bouchbinder E, Hentschel HGE, Procaccia I (2003) Dynamical instabilities of quasistatic crack propagation under thermal stress. Phys Rev E 68:036601

    Article  Google Scholar 

  • Bouchbinder E, Mathiesen J, Procaccia I (2005) Branching instabilities in rapid fracture: dynamics and geometry. Phys Rev E 71:056118

    Article  Google Scholar 

  • Bouchbinder E, Livne A, Fineberg J (2008) Weakly nonlinear theory of dynamic fracture. Phys Rev Lett 101(26):264302

    Article  Google Scholar 

  • Bouchbinder E, Livne A, Fineberg J (2009) The 1/r singularity in weakly nonlinear fracture mechanics. J Mech Phys Solids 57(9):1568–1577

    Article  Google Scholar 

  • Bouchbinder E (2009) Dynamic crack tip equation of motion: high-speed oscillatory instability. Phys Rev Lett 103(16):164301

    Article  Google Scholar 

  • Bouchbinder E (2010) Autonomy and singularity in dynamic fracture. Phys Rev E 82:015101

    Article  Google Scholar 

  • Bouchbinder E, Fineberg J, Marder M (2010a) Dynamics of simple cracks. Annu Rev Condens Matter Phys 1(1):371–395

    Article  Google Scholar 

  • Bouchbinder E, Livne A, Fineberg J (2010b) Weakly nonlinear fracture mechanics: experiments and theory. Int J Fract 162:3–20

    Article  Google Scholar 

  • Bouchbinder E, Brener EA, Barel I, Urbakh M (2011) Slow cracklike dynamics at the onset of frictional sliding. Phys Rev Lett 107(23):235501

    Article  Google Scholar 

  • Bouchbinder E, Goldman T, Fineberg J (2014) The dynamics of rapid fracture: instabilities, nonlinearities and length scales. Rep Prog Phys 77(4):046501

    Article  Google Scholar 

  • Bouchbinder E, Procaccia I (2007) Oscillatory instability in two-dimensional dynamic fracture. Phys Rev Lett 98:124302

    Article  Google Scholar 

  • Bouchon M, Bouin MP, Karabulut H, Toksoz MN, Dietrich M, Rosakis AJ (2001) How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakes. Geophys Res Lett 28(14):2723–2726

    Article  Google Scholar 

  • Bouchon M, Vallee M (2003) Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake. Science 301(5634):824–826

    Article  Google Scholar 

  • Boudet JF, Ciliberto S, Steinberg V (1995) Experimental study of the instability of crack propagation in brittle materials. Europhys Lett 30:337–342

    Article  Google Scholar 

  • Bowden FP, Tabor D (2001) The friction and lubrication of solids, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Braun OM, Barel I, Urbakh M (2009) Dynamics of transition from static to kinetic friction. Phys Rev Lett 103(19):194301

    Article  Google Scholar 

  • Brener EA, Malinin SV, Marchenko VI (2005) Fracture and friction: stick-slip motion. Eur Phys J E 17(1):101–113

    Article  Google Scholar 

  • Brener EA, Marchenko VI (2002) Frictional shear cracks. JETP Lett 76(4):211–214

    Article  Google Scholar 

  • Broberg KB (1960) The propagation of a brittle crack. Arkiv fur Fysik 18:159–192

    Google Scholar 

  • Broberg KB (1999) Cracks and fracture. Academic Press, San Diego

    Google Scholar 

  • Buehler MJ, Abraham FF, Gao H (2003) Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426:141–146

    Article  Google Scholar 

  • Buehler MJ, Gao H (2006) Dynamic fracture instabilities due to local hyperelasticity at crack tips. Nature 439:307–310

    Article  Google Scholar 

  • Burridge R, Conn G, Freund LB (1979) The stability of a rapid mode-II shear crack with finite cohesive traction. J Geophys Res 84(NB5):2210–2222

    Article  Google Scholar 

  • Capozza R, Urbakh M (2012) Static friction and the dynamics of interfacial rupture. Phys Rev B 86(8):085430

    Article  Google Scholar 

  • Chen CH, Zhang HP, Niemczura HPJ, Ravi-Chandar K, Marder M (2011) Scaling of crack propagation in rubber sheets. Europhys Lett 96:36009

    Article  Google Scholar 

  • Cochard A, Rice JR (2001) Fault rupture between dissimilar materials: Ill-posedness, regularization, and slip-pulse response. J Geophys Res B 105(11):25891–25907

    Google Scholar 

  • Cooke ML, Pollard DD (1996) Fracture propagation paths under mixed mode loading within rectangular blocks of polymethyl methacrylate. J Geophys Res 101(B2):3387–3400

    Article  Google Scholar 

  • Corson F, Adda-Bedia M, Henry H, Katzav E (2009) Thermal fracture as a framework for quasi-static crack propagation. Int J Fract 158:1–14

    Article  Google Scholar 

  • Cortet PP, Dalbe MJ, Guerra C, Cohen C, Ciccotti M, Santucci S, Vanel L (2013) Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller. Phys Rev E 87(2):022601

    Article  Google Scholar 

  • Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 14:155

    Article  Google Scholar 

  • Cramer T, Wanner A, Gumbsch P (2000) Energy dissipation and path instabilities in dynamic fracture of silicon single crystals. Phys Rev Lett 85:788–791

    Article  Google Scholar 

  • Cross MC, Hohenberg PC (1993) Pattern-formation outside of equilibrium. Rev Mod Phys 65(3):851–1112

    Article  Google Scholar 

  • Dalbe MJ, Santucci S, Cortet PP, Vanel L (2014a) Strong dynamical effects during stick-slip adhesive peeling. Soft Matter 10(1):132–138

    Article  Google Scholar 

  • Dalbe MJ, Santucci S, Vanel L, Cortet PP (2014b) Peeling-angle dependence of the stick-slip instability during adhesive tape peeling. Soft Matter 10(48):9637–9643

    Article  Google Scholar 

  • Dally JW (1979) Dynamic photoelastic studies of fracture. Exp Mech 19(10):349–361

    Article  Google Scholar 

  • Das S (2003) Spontaneous complex earthquake rupture propagation. Pure Appl Geophys 160(3–4):579–602

    Article  Google Scholar 

  • Deegan RD, Petersan P, Marder M, Swinney HL (2002) Oscillating fracture paths in Rubber. Phys Rev Lett 88:14304

    Article  Google Scholar 

  • Dieterich J (1979) Modelling of rock friction: 1. Experimental results and constitutive equations. J Geophys Res Solid Earth 84:2161–2168

    Article  Google Scholar 

  • Dieterich JH, Kilgore BD (1996) Imaging surface contacts: power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256(1–4):219–239

    Article  Google Scholar 

  • Dunham EM, Favreau P, Carlson JM (2003) A supershear transition mechanism for cracks. Science 299(5612):1557–1559

    Article  Google Scholar 

  • Dunham EM, Archuleta RJ (2004) Evidence for a supershear transient during the 2002 Denali fault earthquake. Bull Seismol Soc Am 94(6):S256–S268

    Article  Google Scholar 

  • Ebert U, van Saarloos W, Caroli C (1997) Propagation and structure of planar streamer fronts. Phys Rev E 55(2):1530–1549

    Article  Google Scholar 

  • Eshelby JD (1971) Fracture mechanics. Sci Prog 59:161–179

    Google Scholar 

  • Falk ML, Needleman A, Rice JR (2001) A critical evaluation of cohesive zone models of dynamic fractur. J Phys IV 11(PR5):43–50

  • Fineberg J, Gross SP, Marder M, Swinney HL (1991) Instability in dynamic fracture. Phys Rev Lett 67(4):457–460

    Article  Google Scholar 

  • Fineberg J, Marder M (1999) Instability in dynamic fracture. Phys Rep 313:1–108

    Article  Google Scholar 

  • Fineberg J, Steinberg V (1987) Vortex-front propagation In Rayleigh–Benard convection. Phys Rev Lett 58(13):1332–1335

    Article  Google Scholar 

  • Fleck M, Pilipenko D, Spatschek R, Brener EA (2011) Brittle fracture in viscoelastic materials as a pattern-formation process. Phys Rev E 83(4):046213

    Article  Google Scholar 

  • Freund LB (1979) Mechanics of dynamic shear crack-propagation. J Geophys Res 84(NB5):2199–2209

    Article  Google Scholar 

  • Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gabriel AA, Ampuero JP, Dalguer LA, Mai PM (2013) Source properties of dynamic rupture pulses with off-fault plasticity. J Geophys Res Solid Earth 118(8):4117–4126

    Article  Google Scholar 

  • Gao H (1996) A theory of local limiting speed in dynamic fracture. J Mech Phys Solids 44:1453–1474

    Article  Google Scholar 

  • Gao H, Huang Y, Abraham FF (2001) Continuum and atomistic studies of intersonic crack propagation. J Mech Phys Solids 49:2113–2132

    Article  Google Scholar 

  • Gao H, Rice JR (1989) A first-order perturbation analysis of crack trapping by arrays of obstacles. J Appl Mech Trans ASME 56(4):828–836

    Article  Google Scholar 

  • Gerde E, Marder M (2001) Friction and fracture. Nature 413:285–288

    Article  Google Scholar 

  • Goldman Boué T, Cohen G, Fineberg J (2015a) Origin of the microbranching instability in rapid cracks. Phys Rev Lett 114:054301

    Article  Google Scholar 

  • Goldman Boué T, Harpaz R, Fineberg J, Bouchbinder E (2015b) Failing softly: a fracture theory of highly-deformable materials. Soft Matter 11(19):3812–3821

    Article  Google Scholar 

  • Goldman T, Livne A, Fineberg J (2010) Acquisition of inertia by a moving crack. Phys Rev Lett 114(11):114301

    Article  Google Scholar 

  • Goldman T, Harpaz R, Bouchbinder E, Fineberg J (2012) Intrinsic nonlinear scale governs oscillations in rapid fracture. Phys Rev Lett 108(10):104303

    Article  Google Scholar 

  • Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Fract 10(4):507–523

    Article  Google Scholar 

  • Gong J, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158

    Article  Google Scholar 

  • Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6(12):2583

    Article  Google Scholar 

  • Gross SP, Fineberg J, Marder M, McCormick W, Swinney HL (1993) Acoustic emissions from rapidly moving cracks. Phys Rev Lett 71(19):3162–3165

    Article  Google Scholar 

  • Guerra C, Scheibert J, Bonamy D, Dalmas D (2012) Understanding fast macroscale fracture from microcrack post mortem patterns. Proc Natl Acad Sci U S A 109(2):390–394

    Article  Google Scholar 

  • Guozden TM, Jagla EA, Marder M (2010) Supersonic cracks in lattice models. Int J Fract 162:107

    Article  Google Scholar 

  • Hakim V, Karma A (2005) Crack path prediction in anisotropic brittle materials. Phys Rev Lett 95(23):235501

    Article  Google Scholar 

  • Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57:342–368

    Article  Google Scholar 

  • Harpaz R, Bouchbinder E (2012) A nonlinear symmetry breaking effect in shear cracks. J Mech Phys Solids 60(10):1703–1709

    Article  Google Scholar 

  • Hawthorne JC, Rubin aM (2013) Laterally propagating slow slip events in a rate and state friction model with a velocity-weakening to velocity-strengthening transition. J Geophys Res Solid Earth 118(7):3785–3808

    Article  Google Scholar 

  • Heizler SI, Kessler DA, Levine H (2002) Mode I fracture in a nonlinear lattice with viscoelastic forces. Phys Rev E 66:016126

  • Henry H (2008) Study of the branching instability using a phase field model of inplane crack propagation. Europhys Lett (EPL) 83(1):16004

    Article  Google Scholar 

  • Henry H, Adda-Bedia M (2013) Fractographic aspects of crack branching instability using a phase-field model. Phys Rev E 88(6):060401

    Article  Google Scholar 

  • Henry H, Levine H (2004) Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys Rev Lett 93(10):105504

    Article  Google Scholar 

  • Hodgdon JA, Sethna JP (1993) Derivation of a general three-dimensional crack-propagation law: a generalization of the principle of local symmetry. Phys Rev B 47(9):4831–4840

    Article  Google Scholar 

  • Holland D, Marder M (1999) Cracks and atoms. Adv Mater 11:793–806

    Article  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, Chichester

    Google Scholar 

  • Hui CL, Ruina A (1995) Why K? High order singularities and small scale yielding. IJF 72:97–120

    Google Scholar 

  • Hull D (1997) Interpretation of river line steps associated with the growth of cracks. In: Chan KS (ed) Cleavage fracture: George R. Irwin symposium. The Metallurgical Society, Warrendale, pp 59–68

    Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Kammer DS, Yastrebov VA, Spijker P, Molinari JF (2012) On the propagation of slip fronts at frictional interfaces. Tribol Lett 48(1):27–32

    Article  Google Scholar 

  • Kammer DS, Radiguet M, Ampuero JP, Molinari JF (2015) Linear elastic fracture mechanics predicts the propagation distance of frictional slip. Tribol Lett 57:23

    Article  Google Scholar 

  • Karma A, Lobkovsky AE (2004) Unsteady crack motion and branching in a phase-field model of brittle fracture. Phys Rev Lett 92(24):245510

    Article  Google Scholar 

  • Katano Y, Nakano K, Otsuki M, Matsukawa H (2014) Novel friction law for the static friction force based on local precursor slipping. Sci Rep 4:6324

    Article  Google Scholar 

  • Kato N (2003) A possible model for large preseismic slip on a deeper extension of a seismic rupture plane. Earth Planet Sci Lett 216(1–2):17–25

    Article  Google Scholar 

  • Kessler DA, Levine H (2001) Nonlinear lattice model of viscoelastic mode III fracture. Phys Rev E 63:016118

    Article  Google Scholar 

  • Kessler DA, Levine H (2003) Does the continuum theory of dynamic fracture work? Phys Rev E 68(3):036118

    Article  Google Scholar 

  • Knauss WG (1970) An observation of crack propagation in anti-plane shear. Int J Fract Mech 6(2):183–187

    Google Scholar 

  • Kobayashi AS, Mall S (1978) Dynamic fracture toughness of Homalite-100. Exp Mech 18(1):11–18

    Article  Google Scholar 

  • Kolvin I, Cohen G, Fineberg J (2015) Crack front dynamics: the interplay of singular geometry and crack instabilities. Phys Rev Lett 114(17):175501

    Article  Google Scholar 

  • Kostrov BV (1975) On the crack propagation with variable velocity. Int J Fract 11(1):47–56

    Article  Google Scholar 

  • Krug J, Spohn H (1991) Kinetic roughening of growing interfaces. Cambridge University Press, Cambridge

    Google Scholar 

  • Langer JS, Lobkovsky AE (1998) Critical examination of cohesive-zone models in the theory of dynamic fracture. J Mech Phys Solids 46(9):1521–1556

    Article  Google Scholar 

  • Lapusta N, Rice JR, Ben-Zion Y, Zheng G (2000) Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. J Geophys Res 105(B10):23765

    Article  Google Scholar 

  • Latour S, Schubnel A, Nielsen S, Madariaga R, Vinciguerra S (2013) Characterization of nucleation during laboratory earthquakes. Geophys Res Lett 40(19):5064–5069

    Article  Google Scholar 

  • Lawn B (1993) Fracture in brittle solids, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lazarus V, Leblond JB, Mouchrif SE (2001) Crack front rotation and segmentation in mixed mode I plus III or I + II + III. Part II: comparison with experiments. J Mech Phys Solids 49(7):1421–1443

    Article  Google Scholar 

  • Lazarus V, Buchholz FG, Fulland M, Wiebesiek J (2008) Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments. Int J Fract 153(2):141–151

    Article  Google Scholar 

  • Leblond JB, Karma A, Lazarus V (2011) Theoretical analysis of crack front instability in mode I + III. J Mech Phys Solids 59(9):1872–1887

    Article  Google Scholar 

  • Leblond JB, Lazarus V, Karma A (2015) Multiscale cohesive zone model for propagation of segmented crack fronts in mode I + III fracture. Int J Fract 191(1–2):167–189

    Article  Google Scholar 

  • Li J, Illeperuma WBK, Suo Z, Vlassak JJ (2014) Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett 3(6):520–523

    Article  Google Scholar 

  • Lin B, Mear ME, Ravi-Chandar K (2010) Criterion for initiation of cracks under mixed-mode I plus III loading. Int J Fract 165(2):175–188

    Article  Google Scholar 

  • Lin WC, Marcellan A, Hourdet D, Creton C (2011) Effect of polymer-particle interaction on the fracture toughness of silica filled hydrogels. Soft Matter 7(14):6578–6582

    Article  Google Scholar 

  • Liu C, Rosakis AJ, Freund LB (1993) The interpretation of optical caustics in the presence of dynamic non-uniform crack-tip motion histories: a study based on a higher order transient crack-tip expansion. Int J Solids Struct 30(7):875–897

    Article  Google Scholar 

  • Liu C, Bizzarri A, Das S (2014) Progression of spontaneous in-plane shear faults from sub-Rayleigh to compressional wave rupture speeds. J Geophys Res Solid Earth 119(11):8331–8345

    Article  Google Scholar 

  • Liu Y, Rice JR (2005) Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences. J Geophys Res 110(B8):B08307

    Google Scholar 

  • Livne A, Cohen G, Fineberg J (2005) Universality and hysteretic dynamics in rapid fracture. Phys Rev Lett 94(22):224301

    Article  Google Scholar 

  • Livne A, Ben-David O, Fineberg J (2007) Oscillations in rapid fracture. Phys Rev Lett 98(12):124301

    Article  Google Scholar 

  • Livne A, Bouchbinder E, Fineberg J (2008) The breakdown of linear elastic fracture mechanics near the tip of a rapid crack. Phys Rev Lett 101(26):264301

    Article  Google Scholar 

  • Livne A, Bouchbinder E, Svetlizky I, Fineberg J (2010) The near-tip fields of fast cracks. Science 327(5971):1359–1363

    Article  Google Scholar 

  • Lu X, Lapusta N, Rosakis AJ (2010) Pulse-like and crack-like dynamic shear ruptures on frictional interfaces: experimental evidence, numerical modeling, and implications. Int J Fract 163(1–2):27–39

    Article  Google Scholar 

  • Lykotrafitis G, Rosakis AJ, Ravichandran G (2006) Self-healing pulse-like shear ruptures in the laboratory. Science 313(5794):1765–1768

    Article  Google Scholar 

  • Madariaga R (1977) High-frequency radiation from crack (stress drop) models of earthquake faulting. Geophys J R Astron Soc 51(3):625–651

    Article  Google Scholar 

  • Maegawa S, Suzuki A, Nakano K (2010) Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol Lett 38(3):313–323

    Article  Google Scholar 

  • Marder M (1991) New dynamical equation for cracks. Phys Rev Lett 66(19):2484–2487

    Article  Google Scholar 

  • Marder M (2004) Cracks cleave crystals. Europhys Lett 66(3):364–370

    Article  Google Scholar 

  • Marder M (2006) Supersonic rupture of rubber. J Mech Phys Solids 54:491–532

    Article  Google Scholar 

  • Marder M, Gross S (1995) Origin of crack tip instabilities. J Mech Phys Solids 43:1–48

    Article  Google Scholar 

  • Marder M, Liu X (1993) Instability in lattice fracture. Phys Rev Lett 71:2417–2420

    Article  Google Scholar 

  • Marone C (1998) The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature 391(6662):69–72

    Article  Google Scholar 

  • Mello M, Bhat HS, Rosakis AJ, Kanamori H (2014) Reproducing the supershear portion of the 2002 Denali earthquake rupture in laboratory. Earth Planet Sci Lett 387:89–96

    Article  Google Scholar 

  • Miller O, Freund LB, Needleman A (1999) Energy dissipation in dynamic fracture of brittle materials. Modell Simul Mater Sci Eng 7(4):573–586

    Article  Google Scholar 

  • Morrissey JW, Rice JR (1998) Crack front waves. J Mech Phys Solids 46(3):467–487

    Article  Google Scholar 

  • Morrissey JW, Rice JR (2000) Perturbative simulations of crack front waves. Crack front waves. J Mech Phys Solids 48(6–7):1229–1251

    Article  Google Scholar 

  • Movchan AB, Movchan NV, Willis JR (2005) Perturbation of a dynamic crack in an infinite strip. Mech Appl Math 58:333–347

    Article  Google Scholar 

  • Murnaghan F (1951) Finite deformation of an elastic solid. Wiley, New York

    Google Scholar 

  • Obrezanova O, Movchan AB, Willis JR (2002) Dynamic stability of a propagating crack. J Mech Phys Solids 50(12):2637–2668

    Article  Google Scholar 

  • Palmer AC, Rice JR (1973) The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc R Soc A Math Phys Eng Sci 332(1591):527–548

    Article  Google Scholar 

  • Passelegue FX, Schubnel A, Nielsen S, Bhat HS, Madariaga R (2013) From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks. Science 340(6137):1208–1211

    Article  Google Scholar 

  • Perrin G, Rice JR, Zheng G (1995) Self-healing slip pulse on a frictional surface. J Mech Phys Solids 43(9):1461–1495

    Article  Google Scholar 

  • Pham VB, Bahr HA, Bahr U, Balke H, Weiss HJ (2008) Global bifurcation criterion for oscillatory crack path instability. Phys Rev E 77:066114

    Article  Google Scholar 

  • Pham KH, Ravi-Chandar K (2014) Further examination of the criterion for crack initiation under mixed-mode I plus III loading. Int J Fract 189(2):121–138

    Article  Google Scholar 

  • Pons AJ, Karma A (2010) Helical crack-front instability in mixed-mode fracture. Nature 464(7285):85–89

    Article  Google Scholar 

  • Radiguet M, Kammer DS, Gillet P, Molinari JF (2013) Survival of heterogeneous stress distributions created by precursory slip at frictional interfaces. Phys Rev Lett 111(16):164302

    Article  Google Scholar 

  • Ramanathan S, Fisher DS (1997) Dynamics and instabilities of planar tensile cracks in heterogeneous media. Phys Rev Lett 79(5):877–880

    Article  Google Scholar 

  • Rashetnia R, Mohammadi S (2015) Finite strain fracture analysis using the extended finite element method with new set of enrichment functions. Int J Numer Methods Eng 102:1316–1351

    Article  Google Scholar 

  • Ravi-Chandar K (1983) A note on the dynamic stress field near a propagating crack. Int J Solids Stuct 19(9):839–841

  • Ravi-Chandar K (2004) Dynamic fracture. Elsevier, Oxford

    Google Scholar 

  • Ravi-Chandar K, Knauss WG (1984a) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fract 26(1):141–154

  • Ravi-Chandar K, Knauss W (1984b) An experimental investigation into dynamic fracture: II. Microstructural aspects. Int J Fract 26(1):65–80

    Article  Google Scholar 

  • Ravi-Chandar K, Yang B (1997) On the role of microcracks in the dynamic fracture of brittle materials. J Mech Phys Solids 45:535–563

    Article  Google Scholar 

  • Rice JR (1968a) Fracture (chap. 3), vol 2. Academic Press, London, pp 191–311

  • Rice JR (1968b) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35(2):379–386

    Article  Google Scholar 

  • Rice JR (1980) The mechanics of earthquake rupture. In: Dziewonski AM, Boschi E (eds) Physics of the Earth’s interior. Italian Physical Society and North-Holland Publ. Co, Amsterdam, pp 555–649

    Google Scholar 

  • Rice JR, Ruina AL (1983) Stability of steady frictional slipping. J Appl Mech 50:343–349

    Article  Google Scholar 

  • Robinson DP, Brough C, Das S (2006) The M-w 7.8, 2001 Kunlunshan earthquake: extreme rupture speed variability and effect of fault geometry. J Geophys Res Solid Earth 111:B08303

    Google Scholar 

  • Ronsin O, Baumberger T, Hui CY (2011) Nucleation and propagation of quasi-static interfacial slip pulses. J Adhes 87(5):504–529

    Article  Google Scholar 

  • Ronsin O, Caroli C, Baumberger T (2014) Crack front echelon instability in mixed mode fracture of a strongly nonlinear elastic solid. EPL 105(3):34001

    Article  Google Scholar 

  • Rosakis AJ, Samudrala O, Coker D (1999) Cracks faster than the shear wave speed. Science 284(5418):1337–1340

    Article  Google Scholar 

  • Rosakis AJ, Freund LB (1981) The effect of crack tip plasticity on the determination of dynamic stress intensity factors by the optical method of caustics. J Appl Mech 48:302–308

    Article  Google Scholar 

  • Rose S, Marcellan A, Hourdet D, Creton C, Narita T (2013) Dynamics of hybrid polyacrylamide hydrogels containing silica nanoparticles studied by dynamic light scattering. Macromolecules 46(11):4567–4574

    Article  Google Scholar 

  • Rose S, Prevoteau A, Elziere P, Hourdet D, Marcellan A, Leibler L (2014) Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505(7483):382–385

    Article  Google Scholar 

  • Rubin AM (2008) Episodic slow slip events and rate-and-state friction. J Geophys Res 113(B11):B11414

    Article  Google Scholar 

  • Rubin AM, Ampuero JP (2005) Earthquake nucleation on (aging) rate and state faults. J Geophys Res 110(B11):B11312

    Article  Google Scholar 

  • Rubinstein SM, Cohen G, Fineberg J (2004) Detachment fronts and the onset of dynamic friction. Nature 430(7003):1005–1009

    Article  Google Scholar 

  • Rubinstein SM, Barel I, Reches Z, Braun OM, Urbakh M, Fineberg J (2011) Slip sequences in laboratory experiments resulting from inhomogeneous shear as analogs of earthquakes associated with a fault edge. Pure Appl Geophys 168(12):2151–2166

    Article  Google Scholar 

  • Sagy A, Reches Z, Fineberg J (2002) Dynamic fracture by large extraterrestrial impacts as the origin of shatter cones. Nature 418(6895):310–313

    Article  Google Scholar 

  • Sagy A, Fineberg J, Reches Z (2004) Shatter cones: branched, rapid fractures formed by shock impact. J Geophys Res Solid Earth 109(B10):B10209

    Article  Google Scholar 

  • Sagy A, Cohen G, Reches Z, Fineberg J (2006) Dynamic fracture of granular material under quasi-static loading. J Geophys Res Solid Earth 111(B4):B003948

    Article  Google Scholar 

  • Scheibert J, Guerra C, Clari F, Dalmas D, Bonamy D (2010) Brittle–quasibrittle transition in dynamic fracture: an energetic signature. Phys Rev Lett 104(4):045501

    Article  Google Scholar 

  • Scholz C, Molnar P, Johnson T (1972) Detailed studies of frictional sliding of granite and implications for earthquake mechanism. J Geophys Res 77(32):6392

    Article  Google Scholar 

  • Scholz CH (1998) Earthquakes and friction laws. Nature 391(6662):37–42

    Article  Google Scholar 

  • Scholz C (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sharon E, Gross S, Fineberg J (1995) Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74(25):5096–5099

    Article  Google Scholar 

  • Sharon E, Gross SP, Fineberg J (1996) Energy dissipation in dynamic fracture. Phys Rev Lett 76(12):2117–2120

    Article  Google Scholar 

  • Sharon E, Cohen G, Fineberg J (2001) Propagating solitary waves along a rapidly moving crack front. Nature 410(6824):68–71

    Article  Google Scholar 

  • Sharon E, Cohen G, Fineberg J (2002) Crack front waves and the dynamics of a rapidly moving crack. Phys Rev Lett 88(8):085503

    Article  Google Scholar 

  • Sharon E, Cohen G, Fineberg J (2004) Comment on “Interaction of shear waves and propagating cracks”. Phys Rev Lett 93(9):099601

    Article  Google Scholar 

  • Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54(10):7128–7139

    Article  Google Scholar 

  • Sharon E, Fineberg J (1998) Universal features of the microbranching instability in dynamic fracture. Philos Mag Part B 78(2):243–251

    Article  Google Scholar 

  • Sharon E, Fineberg J (1999) Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature 397(6717):333–335

    Article  Google Scholar 

  • Shi Z, Ben-Zion Y, Needleman A (2008) Properties of dynamic rupture and energy partition in a solid with a frictional interface. J Mech Phys Solids 56(1):5–24

    Article  Google Scholar 

  • Shibazaki B, Iio Y (2003) On the physical mechanism of silent slip events along the deeper part of the seismogenic zone. Geophys Res Lett 30(9):1489

    Article  Google Scholar 

  • Shibazaki B, Shimamoto T (2007) Modelling of short-interval silent slip events in deeper subduction interfaces considering the frictional properties at the unstable-stable transition regime. Geophys J Int 171(1):191–205

    Article  Google Scholar 

  • Sivashinsky GI (2002) Some developments in premixed combustion modeling. Proc Combust Inst 29:1737–1761

    Article  Google Scholar 

  • Slepyan LI (2002) Models and phenomena in fracture mechanics. Springer, Berlin

    Book  Google Scholar 

  • Smekal A (1953) Zum Bruchvogang bei sprodem Stoffrerhalten unter ein und mehrachsiegen Beanspringen. Osterr Ing Arch 7:49–70

    Google Scholar 

  • Sommer E (1969) Formation of fracture ’lances’ in glass. Eng Fract Mech 1:539–546

    Article  Google Scholar 

  • Spatschek R, Hartmann M, Brener E, Muller-Krumbhaar H, Kassner K (2006) Phase field modeling of fast crack propagation. Phys Rev Lett 96(1):015502

  • Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Philos Mag 91(1):75–95

  • Stephenson RA (1982) The equilibrium field near the tip of a crack for finite plane-strain of incompressible elastic-materials. J Elast 12:65–99

    Article  Google Scholar 

  • Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136

    Article  Google Scholar 

  • Svetlizky I, Fineberg J (2014) Classical shear cracks drive the onset of dry frictional motion. Nature 509(7499):205

    Article  Google Scholar 

  • Tanaka Y, Fukao K, Miyamoto Y, Sekimoto K (1998) Discontinuous crack fronts of three-dimensional fractures. Europhys Lett 43(6):664–670

    Article  Google Scholar 

  • Tromborg J, Scheibert J, Amundsen DS, Thogersen K, Malthe-Sorenssen A (2011) Transition from static to kinetic friction: insights from a 2D model. Phys Rev Lett 107(7):074301

    Article  Google Scholar 

  • Tromborg JK, Sveinsson HA, Scheibert J, Thogersen K, Amundsen DS, Malthe-Sorenssen A (2014) Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces. Proc Natl Acad Sci U S A 111(24):8764–8769

    Article  Google Scholar 

  • Vallee M, Dunham EM (2012) Observation of far-field Mach waves generated by the 2001 Kokoxili supershear earthquake. Geophys Res Lett 39:L05311

    Article  Google Scholar 

  • van Saarloos W (2003) Front propagation into unstable states. Phys Rep 386(2–6):29–222

    Article  Google Scholar 

  • Washabaugh PD, Knauss WG (1994) A reconciliation of dynamic crack velocity and Rayleigh wave speed in isotropic brittle solids. Int J Fract 65:97–114

    Google Scholar 

  • Weeks JD (1993) Constitutive laws for high-velocity frictional sliding and their influence on stress drop during unstable slip. J Geophys Res 98(B10):17637

    Article  Google Scholar 

  • Weertman J (1980) Unstable slippage across a fault that separates elastic media of different elastic constants. J Geophys Res B 85:1455–1461

    Article  Google Scholar 

  • Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24:109–114

    Google Scholar 

  • Willis JR, Movchan NV, Movchan AB (2012) arXiv:1206.0870v1

  • Willis JR, Movchvan AB (1995) Dynamic weight functions for a moving crack. I. Mode I loading. J Mech Phys Solids 43:319–341

    Article  Google Scholar 

  • Willis JR, Movchan AB (1997) Three-dimensional dynamic perturbation of a propagating crack. J Mech Phys Solids 45(4):591–610

    Article  Google Scholar 

  • Xia KW, Rosakis AJ, Kanamori H (2004) Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303(5665):1859–1861

    Article  Google Scholar 

  • Xu G, Bower AF, Ortiz M (1994) An analysis of nonplanar crack-growth under mixed-mode loading. Int J Solids Struct 31(16):2167–2193

    Article  Google Scholar 

  • Yang B, Ravi-Chandar K (1996) On the role of the process zone in dynamic fracture. J Mech Phys Solids 44:1955–1976

    Article  Google Scholar 

  • Yoshida S, Kato N (2003) Episodic aseismic slip in a two-degree-of-freedom block-spring model. Geophys Res Lett 30(13):12–15

    Article  Google Scholar 

Download references

Acknowledgments

E. B. and J. F. acknowledge support from the James S. McDonnell Fund (Grant No. 220020221), E. B. acknowledges support from the Minerva Foundation with funding from the Federal German Ministry for Education and Research, the Harold Perlman Family Foundation and the William Z. and Eda Bess Novick Young Scientist Fund. J. F. acknowledges support from the European Research Council (Grant No. 267256), and the Israel Science Foundation (Grant 76/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Fineberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fineberg, J., Bouchbinder, E. Recent developments in dynamic fracture: some perspectives. Int J Fract 196, 33–57 (2015). https://doi.org/10.1007/s10704-015-0038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-015-0038-x

Keywords

Navigation