Skip to main content
Log in

On the Propagation of Slip Fronts at Frictional Interfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The dynamic initiation of sliding at planar interfaces between deformable and rigid solids is studied with particular focus on the speed of the slip front. Recent experimental results showed a close relation between this speed and the local ratio of shear to normal stress measured before slip occurs (static stress ratio). Using a two-dimensional finite element model, we demonstrate, however, that fronts propagating in different directions do not have the same dynamics under similar stress conditions. A lack of correlation is also observed between accelerating and decelerating slip fronts. These effects cannot be entirely associated with static local stresses but call for a dynamic description. Considering a dynamic stress ratio (measured in front of the slip tip) instead of a static one reduces the above-mentioned inconsistencies. However, the effects of the direction and acceleration are still present. To overcome this, we propose an energetic criterion that uniquely associates, independently on the direction of propagation and its acceleration, the slip front velocity with the relative rise of the energy density at the slip tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Blau, P.J.: Friction Science and Technology, 2nd edn. CRC Press, Boca Raton (2009)

    Google Scholar 

  2. Xia, K., Rosakis, A.J., Kanamori, H.: Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004)

    Article  CAS  Google Scholar 

  3. Coker, D., Lykotrafitis, G., Needleman, A., Rosakis, A.J.: Frictional sliding modes along an interface between identical elastic plates subject to shear impact loading. J. Mech. Phys. Solids 53, 884–922 (2005)

    Article  Google Scholar 

  4. Heaton, T.H.: Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter. 64, 1–20 (1990)

    Article  Google Scholar 

  5. Ben-Zion, Y.: Dynamic ruptures in recent models of earthquake faults. J. Mech. Phys. Solids 49, 2209 (2001)

    Article  Google Scholar 

  6. Scholz, C.H.: The Mechanics of Earthquakes and Faulting, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  7. Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)

    Article  CAS  Google Scholar 

  8. Rubinstein, S., Cohen, G., Fineberg, J.: Dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)

    Article  CAS  Google Scholar 

  9. Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses along a gel/glass interface. Phys. Rev. Lett. 88, 075509 (2002)

    Article  Google Scholar 

  10. Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211 (2010)

    Article  CAS  Google Scholar 

  11. Braun, O., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)

    Article  CAS  Google Scholar 

  12. Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol. Lett. 38, 313 (2010)

    Article  CAS  Google Scholar 

  13. Bouchbinder, E., Brener, E., Barel, I., Urbakh, M.: Slow cracklike dynamics at the onset of frictional sliding. Phys. Rev. Lett. 107, 235501 (2011)

    Article  Google Scholar 

  14. Trømborg, J., Scheibert, J., Amundsen, D., Thøgersen, K., Malthe-Sørenssen, A.: Transition from static to kinetic friction: insights from a 2D model. Phys. Rev. Lett. 107, 074301 (2011)

    Article  Google Scholar 

  15. Amundsen, D.S., Scheibert, J., Thøgersen, K., Trømborg, J., Malthe-Sørenssen, A.: 1D model of precursors to frictional stick–slip motion allowing for robust comparison with experiments. Tribol. Lett. 45, 357 (2012)

    Article  Google Scholar 

  16. Di Bartolomeo, M., Meziane, A., Massi, F., Baillet, L., Fregolent, A.: Dynamic rupture at a frictional interface between dissimilar materials with asperities. Tribol. Int. 43, 1620 (2010)

    Article  Google Scholar 

  17. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)

    Google Scholar 

  18. Rayleigh, J.W.S.: The Theory of Sound, vol. 1, 2nd edn. Dover Publications, New York (1945)

    Google Scholar 

  19. Caughey, T.K.: Classical normal modes in damped linear dynamic systems. J. Appl. Mech. 27, 269–271 (1960)

    Article  Google Scholar 

  20. Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)

    Article  Google Scholar 

  21. Scheibert, J., Dysthe, D.K.: Role of friction-induced torque in stick–motion. Europhys. Lett. 92, 54001 (2010)

    Article  Google Scholar 

  22. Coker, D., Rosakis, A.J., Needleman, A.: Dynamic crack growth along a polymer composite–Homalite interface. J. Mech. Phys. Solids 51, 425–460 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to D. Coker for fruitful discussions and N. Richart for helpful advices on the simulations. The research described in this article is supported by the European Research Council (ERCstg UFO-240332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav A. Yastrebov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kammer, D.S., Yastrebov, V.A., Spijker, P. et al. On the Propagation of Slip Fronts at Frictional Interfaces. Tribol Lett 48, 27–32 (2012). https://doi.org/10.1007/s11249-012-9920-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9920-0

Keywords

Navigation