Skip to main content
Log in

Numerical Verification of the Cross-Property Connections Between Electrical Conductivity and Fluid Permeability of a Porous Material

  • Letters in Fracture and Micromechanics
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper we provide numerical verification on the cross-property connection between effective fluid permeability and effective electrical conductivity. A set of 10 different microstructural patterns has been generated using a molecular dynamics algorithm. The problems are solved numerically using homogenous boundary conditions. The volumetric average over a cubic volume is used to obtain with the effective electrical conductivity and the effective fluid permeability. The tortuosity of the porous phase τ p was estimated by assuming a non-conductive solid phase, the inverse problem was solved to get the tortuosity of the matrix τ s . The accuracy of the cross-property connection developed by Sevostianov and Shrestha (2010) is verified, an error of less than 1% is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archie G.E. (1941) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min., 146: 54–62

    Google Scholar 

  • Avellaneda M., Torquato S. (1991) Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media. Physics of Fluids-A, 3(11): 2529–2540

    Article  CAS  Google Scholar 

  • Beran M.J. (1965) Use of the variational approach to determine bounds for the effective permittivity in random media. Nuovo Cimento, 38(2): 771–782

    Article  Google Scholar 

  • Beran M.J. (1968) Statistical Continuum Theories. Wiley, New York

    Google Scholar 

  • Berryman J.G., Milton G.W. (1988) Microgeometry of random composites and porous media. Journal of Physics D: Applied Physics, 21(1): 87

    Article  Google Scholar 

  • Bristow J.R. (1960) Microcracks, and the static and dynamic elastic constants of annealed heavily cold-worked metals. British J. Appl. Phys, 11(2): 81–85

    Article  CAS  Google Scholar 

  • Carman P.C. (1939) Permeability of saturated sands, soils and clays. The Journal of Agricultural Science, 29(2): 262–273

    Article  CAS  Google Scholar 

  • Cherkaev A., Gibiansky L. (1992) The exact coupled bounds for effective tensors of electrical and magnetic properties of two-component two-dimensional composites. Proc. Roy. Soc. Edinburgh, A 122: 93–125

    Article  Google Scholar 

  • Cornell D., Katz D.L. (1953) Flow of gases through consolidated porous media. Industrial and Engineering Chemistry, 45(10): 2145–2152

    Article  CAS  Google Scholar 

  • Costamagna P., Costa P., Antonucci V. (1998) Micro-modeling of solid oxide fuel cell electrodes. Electrochimica Acta, 43(3–4): 375–394

    Article  CAS  Google Scholar 

  • Costamagna P., Costa P., Arato E. (1998) Some more considerations on the optimization of cermet solid oxide fuel cell electrodes. Electrochimica Acta, 43(8): 967–972

    Article  CAS  Google Scholar 

  • Darcy H. (1856) Les fontaines publiques de la Ville de Dijon. Victor Dalmont, Dalmont

    Google Scholar 

  • Gibiansky L. V., Torquato S. (1993) Link between the conductivity and elastic moduli of composite materials. Physical Review Letters, 71(18): 2927–2930

    Article  Google Scholar 

  • Huet C. (1984) On the defnition and experimental determination of effective constitutive equations foe assimilating heterogeneous materials. Mechanics Research Communications, 11(3): 195–200

    Article  Google Scholar 

  • Kachanov M., Sevostianov I. (2005) On quantitative characterization of microstructures and effective properties. International Journal of Solids and Structures, 42: 309–336

    Article  Google Scholar 

  • Perkins, F. M., Osaba, J. S., and Ribe, K. H. (1956). Resistivity of sanstones as related to the geometry of their intersticial water. Geophysics, XXI(4):1071–1084.

  • Prager S. (1969) Improved variational bounds on some bulk properties of a two-phase random medium. Journal of Chemical Physics, 50(10): 4305–4312

    Article  CAS  Google Scholar 

  • Schwartz L.M., Martys N., Bentz D., Garboczi E.J., Torquato S. (1993) Cross-property relations and permeability estimation in model porous media. Physical Review E, 48(6): 4584–4591

    Article  CAS  Google Scholar 

  • Sevostianov I., Kachanov M. (2002) Explicit cross-property correlations for anisotropic two-phase composite materials. Journal of the Mechanics and Physics of Solids, 50(2): 253–282

    Article  Google Scholar 

  • Sevostianov I., Kachanov M. (2008) Connections between elastic and conductive properties of heterogeneous materials. Advances in Applied Mechanics, 42(2009): 69–252

    Google Scholar 

  • Sevostianov I., Shrestha M. (2010) Cross-property connections between overall electric conductivity and fluid permeability of a random porous media with conducting skeleton. International Journal of Engineering Science, 48(12): 1702–1708

    Article  Google Scholar 

  • Sevostianova E., Leinauer B., Sevostianov I. (2010) Quantitative characterization of the microstructure of a porous material in the context of tortuosity. International Journal of Engineering Science, 48(12): 1693–1701

    Article  Google Scholar 

  • Skoge M., Donev A., Stillinger F.H., Torquato S. (2006) Packing hyperspheres in high-dimensional Euclidean spaces. Physical Review E, 74(041127): 1–11

    Google Scholar 

  • Torquato S. (1990) Relationship between permeability and diffusion-controlled trapping constant of porous media. Physical Review Letters, 64(22): 2644–2646

    Article  Google Scholar 

  • Torquato, S. (2006). Random Heterogeneous Materials. Springer-Verlag .

  • Torquato S., Kim I.C. (1992) Cross-property relations for momentum and diffusional transport in porous media. Journal of Applied Physics, 72(7): 2612–2619

    Article  CAS  Google Scholar 

  • Wiegel F.W. (1980) Fluid flow through porous macromolecular systems. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Winsauer W.O., Shearin H.M., Masson P.H., Williams M. (1952) Resistivity of brine-saturated sands in relation to pore geometry. AAPG Bulletin, 36(2): 253–277

    CAS  Google Scholar 

  • Wyllie M.R.J., Rose W.D. (1950) Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock. Petroleum Transactions, AIME, 189: 105–118

    Google Scholar 

  • Zohdi T.I. (2001) Computational optimization of the vortex manufacturing of advanced materials. Comput. Methods Appl. Mech. Engrg., 190(46–47): 6231–6256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Sevostianov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, J.R., Sevostianov, I. Numerical Verification of the Cross-Property Connections Between Electrical Conductivity and Fluid Permeability of a Porous Material. Int J Fract 177, 81–88 (2012). https://doi.org/10.1007/s10704-012-9740-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9740-0

Keywords

Navigation