Skip to main content

Advertisement

Log in

Flow and Transport Properties of Deforming Porous Media. I. Permeability

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Estimating flow and transport properties of porous media that undergo deformation as a result of applying an external pressure or force is important to a wide variety of processes, ranging from injecting a fracking liquid into shale formations, to CO\(_2\) sequestration in spent oil reservoirs. We propose a novel model for estimating the effective flow and transport properties of such porous media. Assuming that the solid matrix of a porous medium undergoes elastic deformation, and given its initial porosity before deformation, as well as the Young’s modulus of its grains, the model uses an extension of the Hertz–Mindlin theory of contact between grains to compute the new PSD that results from applying an external pressure P to the medium, and utilizes the updated PSD in the effective-medium approximation (EMA) to estimate the effective flow and transport properties at pressure P. In the present part of this series, we use the theory to predict the effective permeability as a function of the applied pressure. Comparison between the predictions and experimental data for twenty-four types of sandstones indicates excellent agreement between the two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and material

The experimental data referenced and plotted throughout this work can be found from their respective published source that is listed in the reference section. For example, much of the data are acquired from Yale, D.P. 1984.

References

  • Adler, P.M., Berkowitz, B.: Effective medium analysis of random lattices. Transp. Porous Media 40, 145 (2000)

    Article  Google Scholar 

  • Aljasmi, A., Sahimi, M.: Efficient image-based simulation of flow and transport in heterogeneous porous media: Application of curvelet transforms. Geophys. Res. Lett. 47, e2019GL085671 (2020)

    Article  Google Scholar 

  • Al-Wandy, W., Zimmerman, R.W.: Effective stress law for the permeability of clay-rich sandstones. J. Geophys. Res. 109, B04203 (2004)

    Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Lindquist, W.B.: Accurate computation of transport properties from microtomographic images. Geophys. Res. Lett. 28, 3361 (2001)

    Article  Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Garboczi, E.: Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment. Geophysics 67, 1396 (2002)

    Article  Google Scholar 

  • Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: basic theory and historical development. Quarterly J. Mech. Appl. Math. XXIX 209 (1976a)

  • Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: applications. J. Inst. Math. Appl. 17, 153 (1976)

    Article  Google Scholar 

  • Bakhshian, S., Sahimi, M.: Computer simulation of the effect of deformation on the morphology and flow properties of porous media. Phys. Rev. E 94, 04290 (2016)

    Article  Google Scholar 

  • Bakhshian, S., Shi, Z., Sahimi, M., Tsotsis, T.T., Jessen, K.: Image-based modeling of gas adsorption and swelling in high-pressure porous formations. Sci. Rep. 8, 8249 (2018)

    Article  Google Scholar 

  • Ballas, G., Fossein, H., Soliva, R.: Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs. J. Struct. Geol. 70, 1 (2015)

    Article  Google Scholar 

  • Baud, P., Meredith, P., Rownend, E.: Permeability evolution during triaxial compaction of an anisotropic porous sandstone. J. Geophys. Res. Solid Earth 117, B05203 (2012)

    Article  Google Scholar 

  • Berryman, J.G.: Long-wavelength propagation in composite elastic solids. II. Ellipsoidal inclusions. J. Acous. Soc. Amer. 68, 1820 (1980)

    Article  Google Scholar 

  • Bhandari, A.R., Flemings, P.B., Polito, P.J., Cronin, M.B., Bryant, S.L.: Anisotropy and stress dependence of permeability in the Barnett shale. Transp. Porous Media 108, 393 (2015)

    Article  Google Scholar 

  • Biot, M.A.: General theory of three dimensional consolidation. J. Appl. Phys. 12, 155 (1941)

    Article  Google Scholar 

  • Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. J. Acous. Soc. Am. 28, 168 (1956)

    Article  Google Scholar 

  • Boutt, D.F., McPherson, B.J.O.L.: Simulation of sedimentary rock deformation: Lab-scale model calibration and parameterization. Geophys. Res. Lett. 29, 131 (2002)

    Article  Google Scholar 

  • Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697 (1982)

    Article  Google Scholar 

  • Branson, E.B., Branson, C.C.: Geology of the Wind River mountains. Wyoming. Am. Asso. Pet. Geol. Bull. 25, 120 (1941)

    Google Scholar 

  • Brown, G., Brindley, G.W.: Crystal Structures of Clay Minerals and Their X-Ray Identification. Mineralogical Society, London (1980)

    Google Scholar 

  • Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen. Annal. Physik 416, 636 (1935)

    Article  Google Scholar 

  • Budiansky, B.: On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solid. 13, 223 (1965)

    Article  Google Scholar 

  • Cheung, C.S.N., Baud, P., Wong, T.: Effect of grain size distribution on the development of compaction localization in porous sandstone. Water Res. Res. 39, L21302 (2012)

    Google Scholar 

  • Chierici, G.L., Ciucci, G.M., Eva, F., Long, G.: Effect of the overburden pressure on some petrophysical parameters of reservoir rocks. Paper WPC-12128, 7th World Petroleum Congress, Mexico City, Mexico (1967)

  • Cowin, S.C., Cardoso, L.: Mixture theory-based poroelasticity as a model of interstitial tissue growth. Mech. Mater. 44, 47 (2012)

    Article  Google Scholar 

  • Das, A., Singh, A.: Evolution of pore size distribution in deforming granular materials. Géotechnique Lett. 7, 1 (2017)

    Article  Google Scholar 

  • Dautriat, J., Gland, N.F., Youssef, S., Rosenberg, E., Békri, S., Vizika-Kavvadias, O.: Stress-dependent directional permeabilities of two analog reservoir rocks: a prospective study on contribution of \(\mu \)-tomography and pore network models. SPE Reserv. Eval. Eng. 12, 297 (2009)

    Article  Google Scholar 

  • David, C., Gueguen, Y., Pampoukis, G.: Effective medium theory and network theory applied to the transport properties of rock. J. Geophys. Res. 95(B5), 6993 (1990)

    Article  Google Scholar 

  • Deresiewicz, H.: Mechanics of granular materials. Adv. Appl. Mech. 5, 233 (1958)

    Article  Google Scholar 

  • Dobrynin, V.M.: Effect of overburden pressure on some properties of sandstone. SPE J. 2, 360 (1962)

    Google Scholar 

  • Doyen, P.M.: Permeability, conductivity, and pore geometry of sandstone. J. Geophys. Res. 93(B7), 7729 (1988)

    Article  Google Scholar 

  • Dvorking, J., Yin, H.: Contact laws for cemented grains: Implications for grain and cement failure. Int. J. Solids Struct. 32, 2497 (1995)

    Article  Google Scholar 

  • Fagbemi, S., Tahmasebi, P., Piri, M.: Pore-scale modeling of multiphase flow through porous media under triaxial stress. Adv. Water Res. 122, 206 (2018)

    Article  Google Scholar 

  • Fatt, I.: Effect of overburden and reservoir pressure on electric logging formation factor. Amer. Asso. Pet. Geol. Bull. 41, 4556 (1957)

    Google Scholar 

  • Fossein, H., Schultz, R.A., Shipton, Z.K., Mair, K.: Deformation bands in sandstone: a review. J. Geol. Soc. Lond. 164, 755 (2007)

    Article  Google Scholar 

  • Fredrich, J.T., Greaves, K.H., Martin, J.W.: Pore geometry and transport properties of Fontainebleau sandstone. Int. J. Mech. Min. Sci. Geomech. Abstr. 30, 691 (1993)

    Article  Google Scholar 

  • Ghanbarian-Alavijeh, B., Hunt, A.G., Ewing, R.E., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77, 1461 (2013)

    Article  Google Scholar 

  • Ghanbarian, B., Sahimi, M., Daigle, H.: Modeling relative permeability of water in soil: application of effective-medium approximation and percolation theory. Water Res. Res. 52, 5025 (2016)

    Article  Google Scholar 

  • Ghanbarian, B., Javadpour, F.: Upscaling pore pressure-dependent gas permeability in shales. J. Geophys. Res. Solid Earth 122, 2541 (2017)

    Article  Google Scholar 

  • Ghanbarian, B., Sahimi, M.: Electrical conductivity of partially-saturated packings of particles. Transp. Porous Media 118, 1 (2017)

    Article  Google Scholar 

  • Ghassemzadeh, J., Hashemi, M., Sartor, L., Sahimi, M.: Pore network simulation of fluid imbibition into paper during coating processes: I. Model development. AIChE J. 47, 519 (2001)

    Article  Google Scholar 

  • Ghassemzadeh, J., Sahimi, M.: Pore network simulation of fluid imbibition into paper during coating - III: Modeling of two-phase flow. Chem. Eng. Sci. 59, 2281 (2004)

    Article  Google Scholar 

  • Goodman, L.E.: Contact stress analysis of normally loaded rough spheres. J. Appl. Mech. 29, 515 (1962)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: General conservation equations for multi-phase systems: 1. Averaging procedure. Adv. Water Resour. 2, 131 (1979a)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations. Adv. Water Resour. 2, 191 (1979b)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interface boundaries. Adv. Water Resour. 13, 169 (1990)

    Article  Google Scholar 

  • Heiland, J.: Permeability of triaxially compressed sandstone: influence of deformation and strain-rate on permeability. Pure Appl. Geophys. 160, 889 (2003)

    Article  Google Scholar 

  • Hertz, H.R.: Über die Berührung fester elastischer Körper (On the contact of elastic solids). J. für die reine und angewandte Mathematik (Crelle’s Journal) 92, 156 (1882)

  • Hill, R.: Theory of mechanical properties of fiber-strengthened materials. III. Self-consistent models. J. Mech. Phys. Solid. 13, 189 (1965)

  • Hughes, B.D., Sahimi, M.: Diffusion in disordered systems with multiple families of transport paths. Phys. Rev. Lett. 70, 2581 (1993a)

    Article  Google Scholar 

  • Hughes, B.D., Sahimi, M.: Stochastic transport in heterogeneous media with multiple families of transport paths. Phys. Rev. E 48, 2776 (1993b)

    Article  Google Scholar 

  • Hunt, A.G., Sahimi, M.: Flow, transport, and reaction in porous media: Percolation scaling, critical-path analysis, and effective-medium approximation. Rev. Geophys. 55, 993 (2017)

    Article  Google Scholar 

  • Huyghe, J.M., Janssen, J.D.: Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35, 790 (1997)

    Article  Google Scholar 

  • Huyghe, J.M., Nikooee, E., Hassanizadeh, S.M.: Bridging effective stress and soil water retention equations in deforming unsaturated porous media: A thermodynamic approach. Transp. Porous Media 117, 349 (2017)

    Article  Google Scholar 

  • Iliev, O., Mikelić, A., Popov, P.: On upscaling certain flows in deformable porous media. Multiscale Model. Simul. 7, 93 (2008)

    Article  Google Scholar 

  • Imdakm, A.A., Sahimi, M.: Transport of large particles in flow through porous media. Phys. Rev. A 36, 5304 (1987)

    Article  Google Scholar 

  • Imdakm, A.O., Sahimi, M.: Computer simulation of particle transport processes in flow through porous media. Chem. Eng. Sci. 46, 1977 (1991)

    Article  Google Scholar 

  • Iritani, E., Katagiri, N., Yamaguchi, K., Cho, J.-H.: Compression-permeability properties of compressed bed of superabsorbent hydrogel particles. Drying Technol. 24, 1243 (2006)

    Article  Google Scholar 

  • Jasinski, L., Sangaré, D., Adler, P.M., Mourzenko, V.V., Thovert, J.-F., Gland, N., Békri, S.: Transport properties of a Bentheim sandstone under deformation. Phys. Rev. E 91, 013304 (2015)

    Article  Google Scholar 

  • Jiang, C., Lu, T., Zhang, D., Li, G., Duan, M., Chen, Y., Liu, C.: An experimental study of deformation and fracture characteristics of shale with pore-water pressure and under triaxial cyclic loading. R. Soc. Open Sci. 5, Paper 180670 (2018)

  • Karada, E.: Investigation of swelling/sorption characteristics of highly swoolen AAm/AMPS hydrogels and semi IPNs with PEG as biopotential sorbent. J. Encaps. Adsorp. Sci. 1, 6 (2010)

    Google Scholar 

  • Keaney, G.M.J., Meredith, P.G., Murrell, S.A.F.: Laboratory study of permeability evolution in a “tight” sandstone under non-hydrostatic stress conditions. SPE paper 47265 (1998)

  • Kerr, D.R., Wheeler, D.M., Rittersbacher, D.J., Home, J.C.: Stratigraphy and sedimentology of the Tensleep sandstone (Pennsylvanian and Permian), Bighorn Mountains. Wyoming. Earth Sci. Bull. 19, 61 (1986)

    Google Scholar 

  • Khoei, A.R., Mohammadnejad, T.: Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of earth and rockfill dams. Comput. Geotech. 38, 142 (2011)

    Article  Google Scholar 

  • Kirkpatrick, S.: Classical transport in disordered media: scaling and effective-medium theories. Phys. Rev. Lett. 27, 1722 (1971)

    Article  Google Scholar 

  • Koehler, S.A., Hilgenfeldt, S., Stone, H.A.: A generalized view of foam drainage: experiment and theory. Langmuir 16, 6327 (2000)

    Article  Google Scholar 

  • Kondo, K.-I., Lio, S., Sawaoka, A.: Nonlinear pressure dependence of the elastic moduli of fused quartz up to 3 GPa. J. Appl. Phys. 52, 2826 (1981)

    Article  Google Scholar 

  • Koplik, J.: On the effective medium theory of random linear networks. J. Phys. C 14, 4821 (1981)

    Article  Google Scholar 

  • Koplik, J., Lin, C., Vermette, M.: Conductivity and permeability from microgeometry. J. Appl. Phys. 56, 3127 (1984)

    Article  Google Scholar 

  • Kristensen, T.J., Turney, M., Woywitka, E., Tsang, B., Gingras, M., Rennie, P., Robertson, E., Jones, T., Speakman, J., Ive, J.W.: Back on the horse: recent developments in achaeological and palaeontological research in Alberta. Archaeological Survey of Alberta, paper No. 36 (2015)

  • Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779 (1952)

    Article  Google Scholar 

  • Lee, J.Y., Weingarten, M., Ge, S.M.: Induced seismicity: the potential hazard from shale gas development and CO\(_2\) geologic storage. Geosci. J. 20, 137 (2016)

    Article  Google Scholar 

  • Li, C., Borja, R.I., Regueiro, R.A.: Dynamics of porous media at finite strain. Comput. Methods Appl. Mech. Eng. 193, 3837 (2004)

    Article  Google Scholar 

  • Lindquist, W.B., Venkatarangan, A., Dunsmuir, J., Wong, T.: Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Res. 105, 509 (2000)

    Google Scholar 

  • Liu, S., Harpalani, S.: Permeability prediction of coalbed methane reservoirs during primary depletion. Int. J. Coal Geol. 113, 1 (2013)

    Article  Google Scholar 

  • Liu, X., Xu, M., Wang, K.: Mechanism of permeability evolution for reservoir sandstone with different physical properties. Fluid Dyn. Geomater. 2018, Paper 5327895 (2018)

  • Makse, H.A., Gland, N., Johnson, D.L., Schwartz, L.: The apparent failure of effective medium theory in granular materials. Phys. Chem. Earth A 26, 107 (2001)

    Article  Google Scholar 

  • Masoudi, R., Pillai, K.M.: Darcy’s law-based model for wicking in paper-like swelling porous media. AIChE J. 56, 2257 (2010)

  • Mathias, S.A., Nielsen, S., Ward, R.L.: Storage coeffcients and permeability functions for coal-bed methane production under uniaxial strain conditions. Transp. Porous Media 130, 627 (2019)

    Article  Google Scholar 

  • Maxwell, S.C., Shemata, J., Campbell, E., Quirk, D.: Microseismic deformation rate monitoring. SPE paper 116596,(2008)

  • Meng, F., Baud, P., Ge, H., Wong, T.: The Effect of stress on limestone permeability and effective stress behavior of damaged samples. J. Geophys. Res. Solid Earth 124, 376 (2019)

    Article  Google Scholar 

  • Meng, F., Li, X., Baud, P., Wong, T.: Effective stress law for the permeability and pore volume change of clayey sandstones. J. Geophys. Res. Solid Earth 125, e2020JB019765 (2020)

    Article  Google Scholar 

  • Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16, 259 (1949)

    Article  Google Scholar 

  • Mukhopadhyay, S., Sahimi, M.: Calculation of the effective permeabilities of field-scale porous media. Chem. Eng. Sci. 55, 4495 (2000)

    Article  Google Scholar 

  • Murad, M.A., Cushman, J.H.: Multiscale flow and deformation in hydrophilic swelling porous media. Int. J. Eng. Sci. 34, 313 (1996)

    Article  Google Scholar 

  • Ngwenya, B.T., Kwon, O., Elphick, S.C., Main, I.G.: Permeability evolution during progressive development of deformation bands in porous sandstones. J. Geophys. Res. Solid Earth 108, 2342 (2003)

    Article  Google Scholar 

  • Osborn, S.G., Vengosh, A., Warner, N.R., Jackson, R.B.: Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc. Natl. Acad. Sci. U.S.A. 108, 8172 (2011)

    Article  Google Scholar 

  • Pesavento, F., Schlefler, A., Sciume, G.: Multiphase flow in deforming porous media: A review. Arch. Comput. Methods Eng. 24, 423 (2017)

    Article  Google Scholar 

  • Pitois, O., Lorenceau, E., Louvet, N., Rouyer, F.: Specific surface area model for foam permeability. Langmuir 25, 97 (2009)

    Article  Google Scholar 

  • Rassamdana, H., Dabir, B., Nematy, M., Farhani, M., Sahimi, M.: Asphalt flocculation and deposition: I. The onset of precipitation. AIChE J. 42, 10 (1996)

    Article  Google Scholar 

  • Richesson, S., Sahimi, M.: Hertz-Mindlin theory of contacting grains and the effective-medium approximation for the permeability of deforming porous media. Geophys. Res. Lett. 46, 8039 (2019)

    Article  Google Scholar 

  • Richesson, S., Sahimi, M.: Flow and transport properties of deforming porous media. II. Electrical conductivity. Transp. Porous Media (2021) (following paper)

  • Rother, G., Ilton, E.S., Wallacher, D., Hau, T., Schaef, H.T., Qafoku, O., Rosso, K.M., Felmy, A.R., Krukowski, E.G., Stack, A.G., Grimm, N., Bodnar, R.J.: CO\(_2\) sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements. Enviro. Sci. Technol. 47, 205 (2013)

    Article  Google Scholar 

  • Ruisten, H., Teufel, L.W., Rhett, D.: Influence of reservoir deformation and permeability of weakly cemented sandstone reservoirs. SPE Reserv. Eval. Eng. 2, 266 (1999)

    Article  Google Scholar 

  • Sahimi, M.: Applications of Percolation Theory. Taylor and Francis, London (1994)

    Book  Google Scholar 

  • Sahimi, M.: Heterogeneous Materials I: Linear Transport and Optical Properties, chapter 5. Springer, Berlin (2003)

    Google Scholar 

  • Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, 2nd edn. Wiley-VCH, Weinheim (2011)

    Book  Google Scholar 

  • Sahimi, M., Hughes, B.D., Scriven, L.E., Davis, H.T.: Real-space renormalization and effective-medium approximation to the percolation conduction problem. Phys. Rev. B 28, 307 (1983)

    Article  Google Scholar 

  • Sahimi, M., Imdakm, A.O.: Hydrodynamics of particulate motion in porous media. Phys. Rev. Lett. 66, 1169 (1991)

    Article  Google Scholar 

  • Sahimi, M., Scriven, L.E., Davis, H.T.: On the improvement of the effective-medium approximation to the percolation conductivity problem. J. Phys. C 17, 1941 (1984)

    Article  Google Scholar 

  • Saitoh, Y., Masuda, F.: Miocene sandstone of ”continental” origin on Iriomote Island, southwest Ryukyu Arc. Eastern Asia. J. Asian Earth Sci. 24, 137 (2004)

  • Salimi, H., Pourjavadi, A., Deidi, F., Eftekhar Jahromi, P., Soleyman, R.: New smart carrageenan-based superabsorbent hydrogel hybrid: Investigation of swelling rate and environmental responsiveness. J. Appl. Polymer Sci. 117, 3228 (2010)

    Google Scholar 

  • Savoji, M.T., Pourjavadi, A.: Partially hydrolized kappa carrageenan - polyacrylonitrile as a novel biopolymer-based superabsorbent hydrogel: synthesis, characterization and swelling behavior. Polymer Eng. Sci. 46, 1778 (2006)

    Article  Google Scholar 

  • Song, I., Renner, J.: Hydromechanical properties of Fontainebleau sandstone: Experimental determination and micromechanical modeling. J. Geophys. Res. 113, B09211 (2008)

    Google Scholar 

  • Stroud, D.: Generalized effective-medium approach to the conductivity of inhomogeneous materials. Phys. Rev. B 12, 3368 (1975)

    Article  Google Scholar 

  • Sweijen, T., Chareyre, B., Hassanizadeh, S.M., Karadimitriou, N.K.: Grain-scale modelling of swelling granular materials; application to super absorbent polymers. Powder Technol. 318, 411 (2017)

    Article  Google Scholar 

  • Tafti, T.A., Sahimi, M., Aminzadeh, F., Sammis, C.G.: Use of microseismicity for determining the structure of the fracture network of large-scale porous media. Phys. Rev. E 87, 032152 (2013)

    Article  Google Scholar 

  • Thovert, J.-F., Adler, P.M.: Grain reconstruction of porous media: application to a Bentheim sandstone. Phys. Rev. E 83, 056116 (2011)

    Article  Google Scholar 

  • Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)

    Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials. Springer, New York (2002)

    Book  Google Scholar 

  • Wadsworth, F.B., Vasseur, J., Scheu, B., Kendrick, J.E., Lavallée, Y., Dingwell, D.B.: Universal scaling of fluid permeability during volcanic welding and sediment diagenesis. Geology 44, 219 (2016)

    Article  Google Scholar 

  • Wang, J., Mao, Z., Jiang, F., Duffy, T.S.: Elasticity of single-crystal quartz to 10 GPa. Phys. Chem. Minerals 42, 203 (2015)

    Article  Google Scholar 

  • Weinstein, T.F., Bennethum, L.S., Cushman, J.H.: Two-scale, three-phase theory for swelling drug delivery systems. Part I: Constitutive theory. J. Pharmaceu. Sci. 97, 1878 (2008)

  • Wu, G., Jia, S., Wu, B., Yang, D.: A discussion on analytical and numerical modelling of the land subsidence induced by coal seam gas extraction. Environ. Earth Sci. 77, 353 (2018) (2018)

  • Wu, T.T.: The effect of inclusions shape on the elastic moduli of two-phase materials. Int. J. Solid Struct. 2, 1 (1966)

    Article  Google Scholar 

  • Yale, D.P.: Network model of flow, storage and deformation in porous rocks, Ph.D. Dissertation, Stanford University, Stanford, California (1984)

  • Yang, S.-Q., Hu, B.: Creep and permeability evolution behavior of red sandstone containing a single fissure under a confining pressure of 30 MPa. Sci. Rep. 10, Paper 1900 (2020)

  • Zhang, H.W., Fu, Z.D., Wu, J.K.: Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media. Adv. Water Resour. 32, 268 (2009)

    Article  Google Scholar 

  • Zhu, H., Dhall, A., Mukherjee, S., Datta, A.K.: A model for flow and deformation in unsaturated swelling porous media. Transp. Porous Media 84, 335 (2010)

    Article  Google Scholar 

  • Zhu, W., Wong, T.: The transition from brittle faulting to cataclastic flow: permeability evolution. J. Geophys. Res. B 102, 3027 (1997)

    Article  Google Scholar 

  • Zhu, W., Wong, T.: Network modeling of the evolution of permeability and dilatancy in compact rock. Water Resour. Res. 104, 2963 (1999)

    Google Scholar 

  • Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Paul, D.K., Shiomi, T.: Static and dynamic behavior of soils: a rational approach to quantitative solution, I. Fully saturated problems. Proc. Roy. Soc. London A 429, 285 (1990)

    Article  Google Scholar 

  • Zienkiewicz, O.C., Shiomi, T.: Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. Int. J. Numer. Analyt. Methods Geomech. 8, 71 (1994)

    Article  Google Scholar 

  • Zoback, M.D., Byerlee, J.D.: Permeability and effective stress: Geologic notes. Am. Asso. Petrol. Geol. Bull. 59, 154 (1975)

    Google Scholar 

Download references

Acknowledgements

Partial support of this work by the Petroleum Research Fund, administered by the American Chemical Society, as well as the National Science Foundation, is gratefully acknowledged. The first author is also grateful to Chevron Oil Company for a Ph.D. scholarship. We thank three anonymous reviewers whose comments and suggestions helped us to greatly improve the manuscript.

Funding

Partial support of this work is by the Petroleum Research Fund, administered by the American Chemical Society, as well as be the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Samuel Richesson.

Ethics declarations

Conflicts of interest

Not applicable.

Code availability

The code used to produce the figures is custom MATLAB code using simple numerical procedures described in the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richesson, S., Sahimi, M. Flow and Transport Properties of Deforming Porous Media. I. Permeability. Transp Porous Med 138, 577–609 (2021). https://doi.org/10.1007/s11242-021-01633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01633-y

Keywords

Navigation