Skip to main content
Log in

Effect of Anisotropy on the Permeability of Electroosmotic Flow Through Porous Media: Multiscale Approach

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Electroosmotic flow through porous media is a crucial contemporary research field that finds its application in the areas of various engineering, geological, and biological settings. Obeying Darcy’s law for electroosmotic flow through porous media in similar lines to that of pressure-driven flow yields a very important physical property of electro-permeability. This work aims to examine the influence of wall zeta potential, Debye length, the solid particle shape, and preferential orientation on the electro-permeability tensor using multiscale homogenization methodology for a single-phase fluid flow. For determining the range of possible particle shapes from prolate-oblate ellipsoid to sphere, the parameter of aspect ratio is employed. Additionally, anisotropy ratio and tortuosity have been explored. The governing equations for this study comprise a mass continuity equation, an advection–diffusion equation, a Poisson–Boltzmann equation for electric double layer, and a Laplace equation for solving the electric field in a fully coupled manner. A two-scale computational homogenization technique is employed to model the fluid-saturated periodic media subjected to external electric effects. The finite element approach is adopted to solve the multiscale and multi-physics problem in a coupled manner. The results indicate that the electro-permeability is significantly affected by wall zeta potential, aspect ratio, and orientation of solid particles. Also, one of the major findings is that the EDL thickness has a vital effect on the electro-permeability, anisotropy ratio, and tortuosity of the porous media.

Article Highlights

  • Permeability of porous media is estimated for a Newtonian fluid when subjected to an external electric field.

  • Electrical double layer (EDL) thickness impacts the tortuosity and anisotropy ratio of the porous media.

  • Wall zeta potential, EDL thickness, solid phase aspect ratio, and orientation affect the permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Airiau, C., Bottaro, A.: Flow of shear-thinning fluids through porous media. Adv. Water Resour. 143, 103658 (2020)

    Article  Google Scholar 

  • Azzam, R., Oey, W.: The utilization of electrokinetics in geotechnical and environmental engineering. Transp. Porous Media 42, 293–314 (2001)

    Article  CAS  Google Scholar 

  • Bandopadhyay, A., DasGupta, D., Mitra, S.K., Chakraborty, S.: Electro-osmotic flows through topographically complicated porous media: role of electropermeability tensor. Phys. Rev. E 87(3), 033006 (2013)

    Article  ADS  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Courier Corporation, London (2013)

    Google Scholar 

  • Bear, J., Buchlin, J.M., et al.: Modelling and 1of transport Phenomena in Porous Media, vol. 5. Springer, Berlin (1991)

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  ADS  Google Scholar 

  • Bourbatache, K., Millet, O., Aît-Mokhtar, A., Amiri, O.: Modeling the chlorides transport in cementitious materials by periodic homogenization. Transp. Porous Media 94(1), 437–459 (2012)

    Article  MathSciNet  CAS  Google Scholar 

  • Cameselle, C.: Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil. Electrochim. Acta 181, 31–38 (2015)

    Article  CAS  Google Scholar 

  • Chen, Y.F., Li, M.C., Hu, Y.H., Chang, W.J., Wang, C.C.: Low-voltage electroosmotic pumping using porous anodic alumina membranes. Microfluid. Nanofluid. 5, 235–244 (2008)

    Article  CAS  Google Scholar 

  • Chen, S., He, X., Bertola, V., Wang, M.: Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson–Boltzmann method. J. Colloid Interface Sci. 436, 186–193 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chen, L., He, A., Zhao, J., Kang, Q., Li, Z.Y., Carmeliet, J., Shikazono, N., Tao, W.Q.: Pore-scale modeling of complex transport phenomena in porous media. Prog. Energy Combust. Sci. 88, 100968 (2022)

    Article  Google Scholar 

  • Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40(4), 1585–1620 (2008)

    Article  MathSciNet  Google Scholar 

  • Clavaud, J.B., Maineult, A., Zamora, M., Rasolofosaon, P., Schlitter, C.: Permeability anisotropy and its relations with porous medium structure. JJ. Geophys. Res. Solid Earth 113(B1), 66 (2008)

    Google Scholar 

  • Coelho, D., Shapiro, M., Thovert, J., Adler, P.: Electroosmotic phenomena in porous media. J. Colloid Interface Sci. 181(1), 169–190 (1996)

    Article  ADS  CAS  Google Scholar 

  • Culbertson, C.T., Ramsey, R.S., Ramsey, J.M.: Electroosmotically induced hydraulic pumping on microchips: differential ion transport. Anal. Chem. 72(10), 2285–2291 (2000)

    Article  CAS  PubMed  Google Scholar 

  • DasGupta, D., Basu, S., Chakraborty, S.: Effective property predictions in multi-scale solidification modeling using homogenization theory. Phys. Lett. A 348(3–6), 386–396 (2006)

    Article  ADS  CAS  Google Scholar 

  • Di Fraia, S., Massarotti, N., Nithiarasu, P.: Modelling electro-osmotic flow in porous media: a review. Int. J. Numer. Methods Heat Fluid Flow 28(2), 472–497 (2018)

    Article  Google Scholar 

  • Duda, A., Koza, Z., Matyka, M.: Hydraulic tortuosity in arbitrary porous media flow. Phys. Rev. E 84(3), 036319 (2011)

    Article  ADS  Google Scholar 

  • Ezzatabadipour, M., Zahedi, H.: A novel method for streamline-based tortuosity calculation and investigation of obstacles shape effect on tortuosity in porous media with random elliptical obstacles using Lattice Boltzmann method. Transp. Porous Media 136, 103–124 (2021)

    Article  MathSciNet  Google Scholar 

  • Ezzatabadipour, M., Zahedi, H.: The investigation of orientation angle effect of random elliptical obstacles on permeability and tortuosity in porous media using Image Processing technique and Lattice Boltzmann Method. Indian J. Phys. 96(14), 4283–4299 (2022)

    Article  ADS  CAS  Google Scholar 

  • Gaikwad, H.S., Baghel, P., Sarma, R., Mondal, P.K.: Transport of neutral solutes in a viscoelastic solvent through a porous microchannel. Phys. Fluids 31(2), 66 (2019)

    Article  Google Scholar 

  • Galindo-Torres, S., Scheuermann, A., Li, L.: Numerical study on the permeability in a tensorial form for laminar flow in anisotropic porous media. Phys. Rev. E 86(4), 046306 (2012)

    Article  ADS  CAS  Google Scholar 

  • Gebäck, T., Heintz, A.: A pore scale model for osmotic flow: homogenization and lattice Boltzmann simulations. Transp. Porous Media 126, 161–176 (2019)

    Article  MathSciNet  Google Scholar 

  • Gerke, K.M., Karsanina, M.V., Katsman, R.: Calculation of tensorial flow properties on pore level: exploring the influence of boundary conditions on the permeability of three-dimensional stochastic reconstructions. Phys. Rev. E 100(5), 053312 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ghazanfari, E., Pamukcu, S., Pervizpour, M., Karpyn, Z.: Investigation of generalized relative permeability coefficients for electrically assisted oil recovery in oil formations. Transp. Porous Media 105, 235–253 (2014)

    Article  CAS  Google Scholar 

  • Godinez-Brizuela, O.E., Niasar, V.J.: Simultaneous pressure and electro-osmosis driven flow in charged porous media: pore-scale effects on mixing and dispersion. J. Colloid Interface Sci. 561, 162–172 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Herr, A., Molho, J., Santiago, J., Mungal, M., Kenny, T., Garguilo, M.: Electroosmotic capillary flow with nonuniform zeta potential. Anal. Chem. 72(5), 1053–1057 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Hunt, A., Blank, L., Skinner, T.: Distribution of hydraulic conductivity in single scale anisotropy. Philos. Mag. 86(16), 2407–2428 (2006)

    Article  ADS  CAS  Google Scholar 

  • Jian, Y., Yang, L., Liu, Q.: Time periodic electro-osmotic flow through a microannulus. Phys. Fluids 22(4), 042001 (2010)

    Article  ADS  Google Scholar 

  • Kang, Y., Yang, C., Huang, X.: Electroosmotic flow in a capillary annulus with high zeta potentials. J. Colloid Interface Sci. 253(2), 285–294 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lei, G., Dong, P., Mo, S., Yang, S., Wu, Z., Gai, S.: Calculation of full permeability tensor for fractured anisotropic media. J. Petrol. Explor. Prod. Technol. 5, 167–176 (2015)

    Article  Google Scholar 

  • Lopez, X., Valvatne, P.H., Blunt, M.J.: Predictive network modeling of single-phase non-Newtonian flow in porous media. J. Colloid Interface Sci. 264(1), 256–265 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Majumdar, P., Dasgupta, D.: Electromagnetohydrodynamic (EMHD) flow through porous media-Multiscale approach. J. Appl. Phys. 134(22), 66 (2023a)

  • Majumdar, P., Dasgupta, D.: Multiscale modeling of electromagnetohydrodynamic flow through porous media. Bull. Am. Phys. Soc. 6, 66 (2023b)

  • Majumdar, P., Dasgupta, D.: Oral: electromagnetohydrodynamic flow and thermal analysis of double stenotic microchannel. Bull. Am. Phys. Soc. 6, 66 (2024)

    Google Scholar 

  • Mondal, P.K., DasGupta, D., Chakraborty, S.: Interfacial dynamics of two immiscible fluids in spatially periodic porous media: the role of substrate wettability. Phys. Rev. E 90(1), 013003 (2014)

    Article  ADS  Google Scholar 

  • Moyne, C., Murad, M.A.: Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. Int. J. Solids Struct. 39(25), 6159–6190 (2002)

    Article  Google Scholar 

  • Moyne, C., Murad, M.A.: A two-scale model for coupled electro-chemo-mechanical phenomena and Onsager’s reciprocity relations in expansive clays: I homogenization analysis. Transp. Porous Media 62, 333–380 (2006)

    Article  MathSciNet  CAS  Google Scholar 

  • Oosterbroek, R.E., Oosterbroek, E., van den Berg, A.: Lab-on-a-Chip: Miniaturized Systems for (bio) Chemical Analysis and Synthesis. Elsevier, Amsterdam (2003)

    Google Scholar 

  • Patankar, N.A., Hu, H.H.: Numerical simulation of electroosmotic flow. Anal. Chem. 70(9), 1870–1881 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Pradhan, A.K., Das, D., Chattopadhyay, R., Singh, S.: Effect of 3D fiber orientation distribution on transverse air permeability of fibrous porous media. Powder Technol. 221, 101–104 (2012)

    Article  CAS  Google Scholar 

  • Raizada, A., Pillai, K.M., Ghosh, P.: A validation of Whitaker’s closure formulation based method for estimating flow permeability in anisotropic porous media. Compos. A Appl. Sci. Manuf. 156, 106831 (2022)

    Article  CAS  Google Scholar 

  • Ramstad, T., Berg, C.F., Thompson, K.: Pore-scale simulations of single-and two-phase flow in porous media: approaches and applications. Transp. Porous Media 130, 77–104 (2019)

    Article  MathSciNet  CAS  Google Scholar 

  • Ray, N., Muntean, A., Knabner, P.: Rigorous homogenization of a Stokes–Nernst–Planck–Poisson system. J. Math. Anal. Appl. 390(1), 374–393 (2012a)

    Article  MathSciNet  Google Scholar 

  • Ray, N., van Noorden, T., Frank, F., Knabner, P.: Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure. Transp. Porous Media 95, 669–696 (2012b)

    Article  MathSciNet  CAS  Google Scholar 

  • Ray, N., Rupp, A., Schulz, R., Knabner, P.: Old and new approaches predicting the diffusion in porous media. Transp. Porous Media 124, 803–824 (2018)

    Article  Google Scholar 

  • Salama, A., Negara, A., El Amin, M., Sun, S.: Numerical investigation of nanoparticles transport in anisotropic porous media. J. Contam. Hydrol. 181, 114–130 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Schulz, R., Ray, N., Zech, S., Rupp, A., Knabner, P.: Beyond Kozeny–Carman: predicting the permeability in porous media. Transp. Porous Media 130, 487–512 (2019)

    Article  MathSciNet  CAS  Google Scholar 

  • Shang, J.: Zeta potential and electroosmotic permeability of clay soils. Can. Geotech. J. 34(4), 627–631 (1997)

    Article  CAS  Google Scholar 

  • Siva, T., Kumbhakar, B., Jangili, S., Mondal, P.K.: Unsteady electro-osmotic flow of couple stress fluid in a rotating microchannel: an analytical solution. Phys. Fluids 32(10), 102013 (2020)

    Article  ADS  CAS  Google Scholar 

  • Tran, A.T., Le-Quang, H., He, Q.C., Nguyen, D.H.: Determination of the effective permeability of doubly porous materials by a two-scale homogenization approach. Transp. Porous Media 145(1), 197–243 (2022)

    Article  CAS  Google Scholar 

  • Wang, M., Chen, S.: Electroosmosis in homogeneously charged micro-and nanoscale random porous media. J. Colloid Interface Sci. 314(1), 264–273 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wang, Y., Li, A., Cui, C.: Remediation of heavy metal-contaminated soils by electrokinetic technology: mechanisms and applicability. Chemosphere 265, 129071 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Yazdchi, K., Srivastava, S., Luding, S.: Microstructural effects on the permeability of periodic fibrous porous media. Int. J. Multiph. Flow 37(8), 956–966 (2011)

    Article  CAS  Google Scholar 

  • Zhang, L., Wang, M.: Electro-osmosis in inhomogeneously charged microporous media by pore-scale modeling. J. Colloid Interface Sci. 486, 219–231 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, D., Zhang, R., Chen, S., Soll, W.E.: Pore scale study of flow in porous media: scale dependency, REV, and statistical REV. Geophys. Res. Lett. 27(8), 1195–1198 (2000)

    Article  ADS  Google Scholar 

  • Zhao, C., Hobbs, B., Ord, A.: Effects of medium permeability anisotropy on chemical-dissolution front instability in fluid-saturated porous media. Transp. Porous Media 99, 119–143 (2013)

    Article  MathSciNet  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. PM and DD outlined the theoretical framework and multiscale implementation. PM performed COMSOL simulations, validated the simulations, and wrote the manuscript. DD read and co-wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Debabrata Dasgupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for Publication

All authors have read and consented.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, P., Dasgupta, D. Effect of Anisotropy on the Permeability of Electroosmotic Flow Through Porous Media: Multiscale Approach. Transp Porous Med 151, 599–624 (2024). https://doi.org/10.1007/s11242-024-02060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-024-02060-5

Keywords

Navigation