Skip to main content
Log in

Emergence in Solid State Physics and Biology

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

There has been much controversy over weak and strong emergence in physics and biology. As pointed out by Phil Anderson in many papers, the existence of broken symmetries is the key to emergence of properties in much of solid state physics. By carefully distinguishing between different types of symmetry breaking and tracing the relation between broken symmetries at micro and macro scales, I demonstrate that the emergence of the properties of semiconductors is a case of strong emergence. This is due to the existence of quasiparticles such as phonons. Furthermore time dependent potentials enable downward causation as in the case of digital computers. Additionally I show that the processes of evolutionary emergence of living systems is also a case of strong emergence, as is the emergence of properties of life out of the underlying physics. A useful result emerges: standard physics theories and the emergent theories arising out of them are all effective theories that are equally valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Basically the same is true in quantum chemistry, see [61].

  2. Reminder: I am using David Chalmer’s definitions, see Sect. 1.1.

  3. Called a “Foundational Determinative Relation” (FDR) by Carl Gillett, see [47].

  4. This is made explicit by [67] in their equations (1) and (2); they say “Eqs. (1) and (2) are, for all practical purposes, the Theory of Everything for our everyday world.”

  5. Complexities can arise regarding the commutation here because of the “\(\ne\)” relation. The implication “\(\Rightarrow\)” here and in (5) should be read “can imply” rather than “implies”. This complication does not apply to (6) because that implication does not use commutation of an inequality.

  6. I am excluding discussion of the context of the very early universe where cosmic inflation took place. In that case, SSB(m) had a major effect at macro scales.

  7. See the Blundell quote in Sect. 3.4.

  8. Note that the laws of physics are not algorithms—it’s Newton’s Laws of Motion, not Newton’s algorithm—and they do not compute, see [15].

  9. They are effective theories in the sense of [28].

  10. “The broken symmetry state is not an eigenstate of the system Hamiltonian H (it breaks one of the symmetries of H) and so it is not a stationary state.” [20].

  11. This is in parallel to the biological case, see Sect. 5.4 and Eq. (21) below.

  12. However note that the issue of randomness is complex and subtle; see for example [96].

  13. A simple analogous model of how this effect works is a pendulum with time dependent length, see the Appendix of [39].

  14. See Climate change and farming: ’Unpredictability is here to stay’.

  15. I thank Martin Rees for that comment.

  16. Private communication.

  17. Note that ‘bottom-up’ and ’top-down’ are used exactly in the opposite way in discussions about EFTs and emergence. The top-down construction of an EFT means that we are constructing the EFT by deriving it from a more fundamental high energy theory. I will use the emergence appellation.

References

  1. Adams, A., Arkani-Hamed, N., Dubovsky, S., Nicolis, A., Rattazzi, R.: Causality, analyticity and an IR obstruction to UV completion. J. High Energy Phys. 10, 014 (2006)

    ADS  MathSciNet  Google Scholar 

  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. Garland Science, New York (2007)

    Google Scholar 

  3. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  4. Anderson, P.W.: More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177, 393–396 (1972)

    ADS  Google Scholar 

  5. Anderson, P.W.: Some general thoughts about broken symmetry. In: Symmetries and Broken Symmetries in Condensed Matter Physics, Ed N. Boccaro (1981), pp. 11–20. Reprinted in A Career in Theoretical Physics (World Scientific, 1994), pp. 419–429 (1981)

  6. Anderson, P.W.: Basic Notions of Condensed Matter Physics. Reissued CRC Press, 2018 (1984)

  7. Anderson, P.W.: Theoretical paradigms for the science of complexity. Nishina Memorial Lectures, pp. 229–234. Reprinted in P W Anderson, A Career in Theoretical Physics. World Scientific, pp. 584–593 (1989)

  8. Anderson, P.W.: A Career in Theoretical Physics. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  9. Anderson, P.W.: Science: a ‘dappled world’ or a ‘seamless web’? Stud. Hist. Philos. Mod. Phys. 32, 487–494 (2001)

    Google Scholar 

  10. Anderson, P.W., Stein, D.L.: Broken symmetry, emergent properties, dissipative structures, life. In: Self-organizing Systems. Springer, Boston, pp. 445–457 (Reprinted in [Anderson 1984]) (1987)

  11. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    MATH  Google Scholar 

  12. Bain, J.: Emergence in effective field theories. Eur. J. Philos. Sci. 3(3), 257–273 (2013)

    MathSciNet  Google Scholar 

  13. Batterman, R.W.: Autonomy of theories: an explanatory problem. Noûs 52, 858–873 (2018)

    Google Scholar 

  14. Berridge, M.: Cell Signalling Biology. Portland Press, London (2014). https://doi.org/10.1042/csb0001001

    Book  Google Scholar 

  15. Binder, P.M., Ellis, G.F.R.: Nature, computation and complexity. Phys. Scr. 91, 064004 (2016)

    ADS  Google Scholar 

  16. Binney, J.J., Dowrick, N., Fisher, A., Newman, M.: The Theory of Critical Phenomena: An Introduction to the Renormalization Group. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  17. Bishop, R.C.: Patching physics and chemistry together. Philos. Sci. 72, 710–722 (2005)

    Google Scholar 

  18. Bishop, R.C.: Downward causation in fluid convection. Synthese 160, 229–248 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Bishop, R.C., Ellis, G.F.R.: Contextual emergence of physical properties. Found. Phys. 1–30

  20. Blundell, S.J.: Phase transitions, broken symmetry and the renormalization group. In: Gibbs, S., Hendry, R., Lancaster, T. (eds.) The Routledge Handbook of Emergence, pp. 237–247. Routledge, London (2019)

    Google Scholar 

  21. Bronowski, J.: The Ascent of Man. Random House, New York (2011)

    Google Scholar 

  22. Burgess, C.P.: An introduction to effective field theory. Annu. Rev. Nucl. Part. Sci. 57, 329–362 (2007)

    ADS  Google Scholar 

  23. Butterfield, J.: Reduction, emergence, and renormalization. J. Philos. 111(1), 5–49 (2014)

    Google Scholar 

  24. Campbell, D.T.: Downward causation in hierarchically organised biological systems. In: Ayala, F.J., Dobhzansky, T. (eds.) Studies in the Philosophy of Biology: Reduction and Related Problems, pp. 179–186. University of California Press, Berkeley (1974)

    Google Scholar 

  25. Campbell, N.A., Reece, J.B.: Biology. Benjamin Cummings, San Francisco (2008)

    Google Scholar 

  26. Carroll, S.B.: Endless Forms Most Beautiful. WW Norton & Company, New York (2005)

    Google Scholar 

  27. Carroll, S.B.: Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134(1), 25–36 (2008)

    Google Scholar 

  28. Castellani, E.: Reductionism, emergence, and effective field theories. Stud. Hist. Philos. Sci. Part B 33, 251–267 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Chalmers, D.J.: Strong and weak emergence. In: Davies, P., Clayton, P. (eds.) The Re-Emergence of Emergence: The Emergentist Hypothesis From Science to Religion. Oxford University Press, Oxford (2006)

    Google Scholar 

  30. Chang, S.: How squid build their graded-index spherical lenses. Phys. Today 70, 26–28 (2017)

    Google Scholar 

  31. Davidson, L., von Dassow, M., Zhou, J.: Multi-scale mechanics from molecules to morphogenesis. Int. J. Biochem. Cell Biol. 41, 2147–2162 (2009)

    Google Scholar 

  32. Davies, P.: The Demon in the Machine: How Hidden Webs of Information are Solving the Mystery of Life. University of Chicago Press, Chicago (2019)

    Google Scholar 

  33. Del Santo, F., Gisin, N.: Physics without determinism: alternative interpretations of classical physics. Phys. Rev. A 100(6), 062107 (2019)

    ADS  Google Scholar 

  34. Drossel, B.: Strong emergence in condensed matter physics. arxiv:1909.01134 (2020)

  35. Ellis, G.: How can Physics Underlie the Mind? Top-Down Causation in the Human Context. Springer, Heidelberg (2016)

    Google Scholar 

  36. Ellis, G.: Why reductionism does not work. Essay for the Kurt Gödel prize and references (2019)

  37. Ellis, G.F.R.: The causal closure of physics in real world contexts. arXiv:2006.00972 (2020)

  38. Ellis, G., Drossel, B.: How downwards causation occurs in digital computers. Found. Phys. 49, 1253–1277 (2019). arxiv:1908.10186

    ADS  MathSciNet  MATH  Google Scholar 

  39. Ellis, G., Kopel, J.: The dynamical emergence of biology from physics. Front. Physiol. 9, 1966 (2019)

    Google Scholar 

  40. Ellis, G.F.R., Meissner, K.A., Nicolai, H.: The physics of infinity. Nat. Phys. 14, 770–772 (2018)

    Google Scholar 

  41. Fink, M., Noble, D.: Noble model. Scholarpedia 3(2), 1803 (2008)

    ADS  Google Scholar 

  42. Franklin, A., Knox, E.: Emergence without limits: the case of phonons. Stud. Hist. Philos. Sci. Part B 64, 68–78 (2018)

    MATH  Google Scholar 

  43. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)

    Google Scholar 

  44. Friston, K.: A free energy principle for biological systems. Entropy 14, 2100–2121 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Ghirardi, G.: Sneaking a Look at God’s Cards: Unraveling the Mysteries of Quantum Mechanics. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  46. Gibb, S., Hendry, R.F., Lancaster, T. (eds.): The Routledge Handbook of Emergence. Routledge In: M. Schouton, H.L. de Jongh (eds) The Matter of the Mind, vol. 76. Blackwell (2019)

  47. Gillett, C.: Emergence, Downward Causation and its Alternatives: Critically Surveying a Foundational Issue, pp. 99–110. The Routledge Handbook of Emergence, Routledge, London (2019)

    Google Scholar 

  48. Goodstein, D.L.: States of Matter. Dover, New York (1985)

    Google Scholar 

  49. Green, S., Batterman, R.: Biology meets physics: reductionism and multi-scale modeling of morphogenesis. Stud. Hist. Philos. Sci. Part C 61, 20–34 (2017)

    Google Scholar 

  50. Green, S., Batterman, R.: Causal slack and top-down causation: Universality and functional equivalence in physics and biology. To appear in Top-Down Causation and Emergence, Ed Otávio Bueno. Springer Synthese Library Book Series (2020)

  51. Grundmann, M.: Physics of Semiconductors. An Introduction Including Nanophysics and Applications. Springer, Berlin (2010)

    Google Scholar 

  52. Guay, A., Sartenaer, O.: Emergent quasiparticles. Or how to get a rich physics from a sober metaphysics. In: Bueno, O., Fagan, M., Chen, R.-L. (eds.) Individuation, Process and Scientific Practices, pp. 214–235. Oxford University Press, New York (2018)

    Google Scholar 

  53. Guyton, A.C.: Basic Human Physiology: Normal Functions and Mechanisms of Disease. W B Saunders, Philadelphia (1977)

    Google Scholar 

  54. Hartmann, S.: Effective field theories, reductionism and scientific explanation. Stud. Hist. Philos. Sci. Part B 32, 267–304 (2001)

    MathSciNet  MATH  Google Scholar 

  55. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402(6761), C47–C52 (1999)

    Google Scholar 

  56. Hodgkin Andrew, L., Andrew Huxley, A.F.: A quantitative description of membrane current and its application. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  57. Hoffmann, P.: Life’s Ratchet: How Molecular Machines Extract Order from Chaos. Basic Books, New York (2012)

    Google Scholar 

  58. Hofmeyr, J.-H.: Basic biological anticipation. In: Poli, R. (ed.) Handbook of Anticipation. Springer, New York (2017)

    Google Scholar 

  59. Hofmeyr, J.-H.: Causation, constructors and codes. Biosystems 164, 121–127 (2018)

    Google Scholar 

  60. Hossenfelder, S.: The case for strong emergence. In: Aguirre, A., Foster, B., Merali, Z. (eds.) What is Fundamental?, pp. 85–94. Springer, Cham (2019)

    Google Scholar 

  61. Hunger, J.: How Classical Models of Explanation Fail to Cope with Chemistry. Philosophy of Chemistry, pp. 129–156. Springer, Dordrecht (2006)

    Google Scholar 

  62. Juarrero, A.: Dynamics in Action: Intentional Behavior as a Complex System. MIT Press, Cambridge (2002)

    Google Scholar 

  63. Karplus, M.: Development of multiscale models for complex chemical systems. Angew. Chem. Int. 53, 9992–10005 (2014)

    Google Scholar 

  64. Kvorning, T.K.: Topological Quantum Matter: A Field Theoretical Perspective. Springer, New York (2018)

    MATH  Google Scholar 

  65. Lancaster, T.: The emergence of excitations in quantum fields. In: Gibb, S., et al. (eds.) The Routledge Handbook of Emergence, pp. 275–286. Routledge, London (2019)

    Google Scholar 

  66. Laughlin, R.B.: Fractional quantisation. Rev. Mod. Phys. 71, 863 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Laughlin, R., Pines, D.: The theory of everything. Proc. Nat. Acad. Sci. 97, 28–31 (2000)

    ADS  MathSciNet  Google Scholar 

  68. Leggett, A.J.: On the nature of research in condensed-state physics. Found. Phys. 22, 221–233 (1992)

    ADS  MathSciNet  Google Scholar 

  69. Lehn, J.-M.: Supramolecular chemistry. Science 260, 1762–1764 (1993)

    ADS  Google Scholar 

  70. Lehn, J.-M.: Supramolecular Chemistry. Wiley-VCH, New York (1995)

    Google Scholar 

  71. Luu, T., Meißner, U.-G.: On the topic of emergence from an effective field theory perspective. arxiv:1910.13770 (2019)

  72. Mayr, E.: What Evolution is?. Basic books, New York (2001)

    Google Scholar 

  73. McGhee, G.R.: The Geometry of Evolution: Adaptive Landscapes and Theoretical Morphospaces. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  74. McLeish, T., Pexton, M., Lancaster, T.: Emergence and topological order in classical and quantum systems. Stud. Hist. Philos. Sci. Part B 66, 155–169 (2019)

    MathSciNet  MATH  Google Scholar 

  75. Mellisinos, A.C.: Principles of Modern Technology. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  76. Menzies, P.: The Causal Efficacy of Mental States. Physicalism and Mental Causation. Exeter: Imprint Academic, pp. 195–224 (2003)

  77. Morrison, M.: Emergent physics and micro-ontology. Philos. Sci. 79, 141–166 (2012)

    MathSciNet  Google Scholar 

  78. Mossio, M.: Closure, causal. In: Dubitzky, W., Wolkenhauer, O., Cho, K.-H., Yokota, H. (eds.) Encyclopedia of Systems Biology, pp. 415–418. Springer, New York (2013)

    Google Scholar 

  79. Noble, D.: The Music of Life: Biology Beyond Genes. Oxford University Press, Oxford (2008)

    Google Scholar 

  80. Noble, D.: A theory of biological relativity: no privileged level of causation. Interface focus 2, 55–64 (2012)

    Google Scholar 

  81. Noble, R., Noblem, D.: Harnessing stochasticity: how do organisms make choices? Chaos 28, 106309 (2018)

    ADS  Google Scholar 

  82. Nurse, P.: Life, logic and information. Nature 454, 424–426 (2008)

    ADS  Google Scholar 

  83. Oyama, S., Griffiths, P.E., Gray, R.D.: Cycles of Contingency: Developmental Systems and Evolution. MIT Press, Cambridge (2001)

    Google Scholar 

  84. Peacocke, A.R.: An Introduction to the Physical Chemistry of Biological Organization. Oxford University Press, Oxford (1989)

    Google Scholar 

  85. Petsko, G.A., Ringe, D.: Protein Structure and Function. Oxford University Press, Oxford (2009)

    Google Scholar 

  86. Phillips, P.: Advanced Solid State Physics. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  87. Rhoades, R., Pflanzer, R.: Human Physiology. Saunders College Publishing, Fort Worth (1989)

    Google Scholar 

  88. Rivat, S., Grinbaum, A.: Philosophical foundations of effective field theories. Eur. Phys. J. A 56, 1–10 (2020)

    Google Scholar 

  89. Schwabl, F.: Quantum Mechanics. Springer, Berlin (2007)

    MATH  Google Scholar 

  90. Schweber, S.S.: Physics, community, and the crisis in physical theory. Phys. Today 46, 34–34 (1993)

    Google Scholar 

  91. Scott, A.: Stairway to the Mind: The Controversial New Science of Consciousness. Springer, New York (1999)

    Google Scholar 

  92. Simon, S.H.: The Oxford Solid State Basics. OUP, Oxford (2013)

    MATH  Google Scholar 

  93. Solyom, J.: Fundamentals of the Physics of Solids: Electronic Properties, vol. 2. Springer, Berlin (2009)

    Google Scholar 

  94. Sweeney, A., Marais, D., Ban, Y.E., Johnsen, S.: Evolution of graded refractive index in squid lenses. J. R. Soc. Interface 4, 685–698 (2007)

    Google Scholar 

  95. Tanenbaum, A.S.: Structured Computer Organisation, 5th edn. Prentice Hall, Englewood Cliffs (2006)

    Google Scholar 

  96. Wagner, A.: The role of randomness in Darwinian evolution. Philos. Sci. 79, 95–119 (2012)

    Google Scholar 

  97. Wagner, A.: Arrival of the Fittest: Solving Evolution’s Greatest Puzzle. Penguin, New York (2014)

    Google Scholar 

  98. Watson, J.D., et al.: Molecular Biology of the Gene. Pearson, London (2013)

    Google Scholar 

  99. Weinberg, S.: Effective Field Theory, Past and Future, Memorial Volume for Y. Nambu, pp. 1–24. World Scientific, Singapore (2009)

    Google Scholar 

  100. Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1948)

    Google Scholar 

  101. Wilson, K.G.: The renormalization group and critical phenomena. https://www.nobelprize.org/uploads/2018/06/wilson-lecture-2.pdf (1982)

  102. Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. Sixth Int. Cong. Genet. 1(8), 355–66 (1932)

    Google Scholar 

  103. Zhang, S.C., Hansson, T.H., Kivelson, S.: Effective-field-theory model for the fractional quantum Hall effect. Phys. Rev. Lett. 62, 82 (1989)

    ADS  Google Scholar 

  104. Ziman, J.M.: Principles of the Theory of Solids. Cambridge University Press, Cambridge (1979)

    MATH  Google Scholar 

Download references

Acknowledgements

I thank Barbara Drossel, Andrew Briggs, Martin Rees, and Carlo Rovelli for helpful comments. I thank Carole Bloch and Rob Adam for extremely helpful proposals regarding the scope of this paper. I thank two anonymous referees for comments that have greatly strengthened the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. R. Ellis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, G.F.R. Emergence in Solid State Physics and Biology. Found Phys 50, 1098–1139 (2020). https://doi.org/10.1007/s10701-020-00367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-020-00367-z

Keywords

Navigation