Skip to main content
Log in

Periodic tables for cations + 1, + 2, + 3 and anions − 1. Quantitative characteristics for manifestations of internal periodicity and kainosymmetry

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

This paper describes the construction of the Periodic Tables for cations of all elements with charges + 1, + 2, + 3 and anions with charge − 1. The Table for cations+1 differs significantly from other newly constructed Tables and from known Tables, as the d- and f-blocks are inserted into s-block and split it up for two parts. Importantly, a new type of 3d- and 4f-shell contractions has been discovered. The manifestations of secondary periodicity in case of anions is absent or opposite to the manifestations observed for atoms and cations. For kainosymmetric anions, the ionization energies are lowered, which contradicts the theoretical assumptions and experimental data supporting the classical concept of kainosymmetry. Simple formulas are proposed for quantitative description of the manifestations of internal periodicity and kainosymmetry. The regularities of change in these manifestations depending on the charge and the position of ions or atoms in the Periodic Table are established. In the 6th period, the bifurcation in the properties characteristic of the internal periodicity does not occur at usual position, i.e. in the middle of the row from the block of the Periodic Table (p3–p4), but takes place earlier, along with the transition of the electronic configurations p2–p3. In other words, the place of transition from "early" to "late" elements changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Outer s-. p-, d- or f-electrons that determine the assignment of an atom to s-. p-, d- or f-block.

  2. In other words, the sum of all i-electrons in an atom of an i-block (Imyanitov 2019b).

  3. Along with observing the general regularity, there were deviations from the given electronic configurations of cations+1:

    • In periods beginning with Ca+, Sr+, Ba+, and Ra+, instead of the dns1 configuration, dn+1s0 was realized sometimes, instead of the f-configuration - d-configuration.

    • In the period beginning with Ra+, there were sometimes s2 configurations instead of s1. This was also the case in Y+.

    These deviations are caused by the proximity of energy levels and are often observed in other cases. These deviations cannot be considered a significant argument against the adequacy of Table 2.

  4. Prof. W.H.E.Schwarz proved to me that while considering the Fig. 5a (taken from a textbook) in this article, the location of the maxima should be 3s < 3p < 3d, but not 3d < 3s< 3p. At the same time, due to the kainosymmetry, 3d should be relatively closer to 3p than 4d to 4p in Fig. 5b.

  5. There is also a relativistic effect (Fricke and Waber 1972; Pyykkö and Desclaux 1979; p. 278; Pyykkö 1979, 1988, p. 566).

  6. Hereinafter, idealized electron configurations are taken in accordance with the position in the Periodic Table (Table 6).

  7. Therefore, sometimes “absence of primogenic repulsion" is used instead of the term "kainosimmetry".

    (Pyykko 1988, 2001, p. 567). The emphasis on the absence of a radial nodes is made in some publications (Shchukarev 1977; Kaupp 2007).

  8. The kainosymmetric 2p-configuration of the B–F anions has been confirmed (Hotop and Lineberger 1985).

  9. The kainosymmetric 3d-configuration of the Ti–Cr and Fe–Cu anions has been confirmed (Hotop and Lineberger 1985).

  10. Outer s-. p-, d- or f-electrons that determine the assignment of an atom to s-. p-, d- or f-block.

  11. In other words, the sum of all i-electrons in an i-block atom.

References

  • Bent, H.: New Ideas in Chemistry from Fresh Energy for the Periodic Law. Authorhouse, Bloomington (2006)

    Google Scholar 

  • Biltz, W.: Raumchemie der festen stoffe, S. 197. L. Voss, Leipzig (1934)

  • Biron, E.V.: Phenomena of secondary periodicity. Zh. Russ. Fiz.-Khim. Obshch. Ch. Khim. 47, 964–988 (1915). (in Russian)

    Google Scholar 

  • Blagojevic, V., Lavrov, V.V., Koyanagi, G.K., Bohme, D.K.: Early atomic transition metal cations reacting with ammonia at room temperature: H2 elimination and NH3 ligation kinetics across and down the periodic table. Int. J. Mass Spect. 435, 181–187 (2019)

    Article  Google Scholar 

  • Filippov, G.G., Gorbunov, A.I.: Four ‘“correct”’ forms of the periodic system of elements. Zh. Fiz. Khim. 67, 1809–1812 (1993). (in Russian)

    Google Scholar 

  • Frackiewicz, K., Czerwinski, M., Siekierski, S.: Secondary periodicity in the tetrahalogeno complexes of the group 13 elements. Eur. J. Inorg. Chem. 19, 3850–3856 (2005)

    Article  Google Scholar 

  • Fricke, B., Waber, J.T.: Atomic and ionic radii of superheavy elements. J. Chem. Phys 56, 3246–3248 (1972)

    Article  Google Scholar 

  • Godovikov, A.A.: Orbital Radii and Element Properties, pp. 40–56. Nauka, Novosibirsk (1977). (in Russian)

    Google Scholar 

  • Godovikov, A.A.: The Periodic System of D.I. Mendeleev and the Element Strength Characteristics, p. 34. Nauka, Novosibirsk (1981). (in Russian)

    Google Scholar 

  • Goldschmidt, V.M., Barth, T., Lunde, G.: Wirkung der lanthaniden auf die gitterdimensionen der elemente mit atomnummern, welche höher als 71 sind, die “lanthanidenkontraktion.” Skrifter Norske Videnskaps. Akad. Oslo., 1 Mat.-Nat. Kl., 7, 13–17. (1925). Chem. Abstr. 19, 3391 (1925)

    Google Scholar 

  • Hotop, H., Lineberger, W.C.: Binding energies in atomic negative ions: II. J. Phys. Chem. Ref. Data. 14, 742–745 (1985)

    Article  Google Scholar 

  • Huheey, J.E., Huheey, C.L.: Anomalous properties of elements that follow “Long Periods” of elements. J. Chem. Educ. 49, 227–230 (1972)

    Article  Google Scholar 

  • Imyanitov, N.S.: New basis for describing periodicity. Zh. Obshch. Khim. 80, 69–72 (2010a). (in Russian)

    Google Scholar 

  • Imyanitov, N.S.: New basis for describing periodicity. Russ J. Gener. Chem. (Engl. Transl.) 80, 65–68 (2010)

    Article  Google Scholar 

  • Imyanitov, N.S.: Application of a new formulation of the periodic law to predicting the proton affinity of elements. Zh. Neorg. Khim. 56, 795–798 (2011a). (in Russian)

    Google Scholar 

  • Imyanitov, N.S.: Application of a New formulation of the periodic law to predicting the proton affinity of elements. Russ. J. Inorg. Chem. 56, 745–748 (2011b)

    Article  Google Scholar 

  • Imyanitov, N.S.: The periodic law. Formulations, equations, graphic representations. Russ. J. Inorg. Chem. 56, 2183–2200 (2011)

    Article  Google Scholar 

  • Imyanitov, N.S.: Adequacy of the new formulation of the Periodic Law when fundamental variations occur in blocks and periods. Found. Chem. 16, 235–247 (2014)

    Article  Google Scholar 

  • Imyanitov, N.S.: Dialectics and synergetics in chemistry. periodic table and oscillating reactions. Found. Chem. 18, 21–56 (2016)

    Article  Google Scholar 

  • Imyanitov, N.S.: Spiral as the fundamental graphic representation of the periodic law. Blocks of elements as the autonomic parts of the periodic system. Found. Chem. 18, 153–173 (2016)

    Article  Google Scholar 

  • Imyanitov, N.S.: Does the period table appear doubled? Two variants of division of elements into two subsets. Intern. Second. Period. Found. Chem. 21, 255–284 (2019a)

    Article  Google Scholar 

  • Imyanitov, N.S.: Periodic law: new formulation and equation description. Pure Appl. Chem. 91, 2007–2021 (2019b)

    Article  Google Scholar 

  • Jensen, W.B.: The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table. J. Chem. Ed. 59, 634–636 (1982)

    Article  Google Scholar 

  • Jørgensen, K.: Oxidation Numbers and Oxidation States, p. 49. Springer, Berlin (1969)

    Book  Google Scholar 

  • Jørgensen, C.K.: Energy Levels of Complexes and Gaseous Ions, (Ph.D Thesis, University of Copenhagen), Gjellerups Forlag, Copenhagen (1957)

  • Kaupp, M.: The role of radial nodes of atomic orbitals for chemical bonding and the periodic table. J. Comput. Chem. 28, 320–325 (2007)

    Article  Google Scholar 

  • Klemm, W., Westlinning, H.: Untersuchungen uber die verbindungen der magnesiums mit den elementen der IVb-gruppe. Ztschr. Anorg. Allgem. Chem. 245, 365–380 (1941)

    Article  Google Scholar 

  • Korableva, T.P., Korol’kov, D.V.: Theory of the Periodic System. Izd-vo SPbU, Petersburg (2005). (in Russian)

    Google Scholar 

  • Korobov, M.V.: Electron affinity. In: Zefirov, N.S. (ed.) Chemical Encyclopedia, vol. 4, p. 411. Great Soviet Encyclopedia, Moscow (1995). (in Russian)

    Google Scholar 

  • Korolkov, D.V., Skorobogatov, G.A.: Fundamentals of Theoretical Chemistry, p. 310. Academy, Moscow (2004)

    Google Scholar 

  • Kramida, A., Ralchenko, Y., Reader, J., and NIST ASD Team (2019).: NIST Atomic Spectra Database (ver. 5.7.1), Ground States and Ionization Energies [Online). Available: https://physics.nist.gov/asd [2020, July 7). National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.18434/T4W30F  

  • Lakatos, B.: Transition metal contraction and double contraction. Naturwissensch. 41, 355–356 (1954)

    Article  Google Scholar 

  • Lakatos, B.: Periodicity of the chemical thermodynamic properties of compounds. Acta Chim. Acad. Scient. Hung. 8, 207–231 (1955)

    Google Scholar 

  • Larin, I.K., Tal’roze, V.L.: Ions in gases. In: Knunyants, I.L. (ed.) Chemical Encyclopedia, vol. 2, p. 527. Soviet Encyclopedia, Moscow (1990) . (in Russian)

    Google Scholar 

  • Magomedov, M.N.: The correlation of the parameters of interatomic interaction in crystals with the position of atom in the periodic table. High Temp. 46, 484–494 (2008)

    Article  Google Scholar 

  • Melnikov, V.P., Dmitriev, I.S.: Additional Types of Periodicity in the D.I. Mendeleev’s Periodic System. Nauka, Moscow (1988). (in Russian)

    Google Scholar 

  • Miller, T.M.: Electron affinities. In: Haynes, W. M. (ed-in-ch) CRC Handbook of Chemistry and Physics. 97th ed, pp. 10-147-149. CRC Press, Boca Raton, Lond, New York (2016–2017)

  • Ovsyannikov, A.A.: Plasma. In: Knunyants, I.L. (ed.) Chemical Encyclopedia, vol. 3, p. 552. Great Soviet Encyclopedia, Moscow (1992) . (in Russian)

    Google Scholar 

  • Pyykkö, P.: On the interpretation of ‘secondary periodicity’ in the periodic system. J. Chem. Res. Synopses 11, 380–381 (1979)

    Google Scholar 

  • Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988)

    Article  Google Scholar 

  • Pyykkö, P.: A note on nodal structures, partial screening, and periodic trends among alkali metals and alkaline earths. Int. J. Quant. Chem. 85, 18–21 (2001)

    Article  Google Scholar 

  • Pyykkö, P.: A suggested periodic table up to Z ≤ 172, based on Dirac-Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 13, 161–168 (2011)

    Article  Google Scholar 

  • Pyykkö, P., Desclaux, J.P.: Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276–281 (1979)

    Article  Google Scholar 

  • Rokhlin, L.L.: Magnesium Alloys Containing Rare Earth Metals: Structure and Properties. Taylor & Francis, London (2003)

    Book  Google Scholar 

  • Scerri, E.: Mendeleev’s periodic table is finally completed and what to do about group 3? Chem. Int. 34(4), 28–31 (2012)

    Google Scholar 

  • Scerri, E.R.: The Periodic Table: Its Story and its Significance, 2nd edn. Oxford University Press, New York (2019)

    Book  Google Scholar 

  • Scerri, E.: Recent attempts to change the periodic table. Phil. Trans. r. Soc. A 378, 20190300 (2020)

    Article  Google Scholar 

  • Shayesteh, A., Lavrov, V.V., Koyanagi, G.K., Bohme, D.K.: Reactions of atomic cations with methane: gas phase room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A 113, 5602–5611 (2009)

    Article  Google Scholar 

  • Shchukarev, S.A.: Inorganic Chemistry, vol. 1, pp. 146–151. Vysshaya Shkola, Moscow (1970)

    Google Scholar 

  • Shchukarev, S.A.: Modern significance of D I Mendeleev’s periodic law and prospects for development. In: Semenov, N.N. (ed.) One Hundred Years Period. Khim Elem. Law, Dokl. Plenarnykh Zased., Yubileinyi Mendeleev. S’ezd, 10th, pp. 40–53. Nauka, Moscow (1971) . (in Russian)

    Google Scholar 

  • Shchukarev, S.A.: Inorganic Chemistry, vol. 2, pp. 103-107–118. Vysshaya Shkola, Moskow (1974). (in Russian)

    Google Scholar 

  • Shchukarev, S.A.: New views of D.I. Mendeleev’s system. I. Periodicity of the stratigraphy of atomic electronic shells in the system, and the concept of kainosymmetry. Zh. Obshch. Khim. 47, 246–259 (1977)

    Google Scholar 

  • Siekierski, S.: Ionic Radii: effect of shell radius, cation charge and lone electron pair. Commun. Inorg. Chem. 19, 121–131 (1997)

    Article  Google Scholar 

  • Trifonov, D.N.: Afterword of the editor. In: Melnikov, V.P., Dmitriev, I.S. (eds.) Additional Types of Periodicity in the D.I. Mendeleev’s Periodic System. Nauka, Moscow (1988). (in Russian)

    Google Scholar 

  • Trifonov, D.N.: Periodic table of chemical elements. In: Knunyants, I.L. (ed.) Chemical Encyclopedia, vol. 3, pp. 482–486. Great Russian Encyclopedia, Moscow (1992). (in Russian)

    Google Scholar 

  • Vernon, R.E.: The location and composition of group 3 of the periodic table. Found. Chem. 23, 155–197 (2021)

    Article  Google Scholar 

  • Wang, S.-G., Schwarz, W.H.E.: Icon of chemistry: the periodic system of chemical elements in the new century. Angew. Chem. Int. Ed. 48, 3404–3415 (2009)

    Article  Google Scholar 

  • Wang, Z., Hu, H., von Szentpály, L., Stoll, H., Fritzsche, S., Pyykkö, P., Schwarz, W.H.E., Li, Jun: Understanding the Uniqueness of 2p elements in periodic tables chemistry. Chem. Eur. J. 26, 15558–15564 (2020)

    Article  Google Scholar 

  • Wiberg, N.: Inorganic Chemistry. Academic Press, San Diego (2001)

    Google Scholar 

  • Wikipedia contributors: Electron affinity (data page). In: Wikipedia, The Free Encyclopedia (2020). https://en.wikipedia.org/w/index.php?title=Electron_affinity_(data_page)&oldid=1049662204. Accessed 4 Oct 2020

  • Xiang, Z., Koyanagi, G.K., Bohme, D.K.: Reactions of methyl fluoride with atomic transition-metal and main-group cations: gas-phase room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A 110, 10607–10618 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the Reviewer for a detailed review of the article, a high-quality discussion and useful tips. I appreciate the contribution of E.N. Imyanitov to the English editing. I also gratefully acknowledge discussions with W. H. Eugen Schwarz. Many thanks to the American National Institute of Standards and Technology (NIST), which provides a huge number of updated, accurate, critically evaluated, and easy-to-use data freely available via the Internet. I acknowledge the anonymous creator of the Data page with detailed and upgrade electron affinity data in the Wikipedia encyclopedia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naum S. Imyanitov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imyanitov, N.S. Periodic tables for cations + 1, + 2, + 3 and anions − 1. Quantitative characteristics for manifestations of internal periodicity and kainosymmetry. Found Chem 24, 189–219 (2022). https://doi.org/10.1007/s10698-022-09421-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-022-09421-2

Keywords

Navigation