Skip to main content
Log in

Dialectics and synergetics in chemistry. Periodic Table and oscillating reactions

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

This work utilizes examples from chemical sciences to present fundamentals of dialectics and synergetics. The laws of dialectics remain appropriate at the level of atoms, at the level of molecules, at the level of the reactions, and at the level of ideas. The law of the unity and conflict of opposites is seen, for instance, in the relationships between the ionization energy and electron affinity of atoms, between the forward and back reactions, as well as in the differentiation and integration between the various areas of chemistry. The law of the passage of quantitative changes into qualitative changes describes the transformation properties of the compounds when the number and arrangement of atoms in the molecule undergoes changes. According to this law, the development is accompanied by breaks and jumps. This paper suggests equations for the description of these relationships. The law of the negation of the negation is manifested in the Periodic Law, in the evolution of ideas about the mutual transformation of chemical elements, in the development the concept of triads of elements, etc. Small changes in the conventional Periodic Table on the basis of previously rejected versions allow reflecting secondary and additional periodicity. Synergetics, similarly to dialectics, is dedicated to the studies of general laws of evolution. Synergetics includes highly advanced and specified ideas of dialectics. The cornerstone of synergetics is the principles of self-organization and nonlinearity. Mathematical development of these concepts was substantially facilitated by considering oscillating chemical reactions as an example. These reactions are quite complex and therefore provide adequate models for self-organization. Oscillations may exist only upon execution of specific thermodynamic, mathematical, and chemical conditions. Mechanisms of several oscillatory reactions (Belousov–Zhabotinskii, Bray–Liebhavsky, oxidative carbonylation of acetylenes) are briefly reviewed. The construction of novel biomimetic or smart materials based on oscillating reactions is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. It should be noted that in modern natural sciences drift occurs in the opposite direction towards idealism (Imyanitov 2003b, p. 10). In particular, taking into account the need to consider not only the phenomenon but also the observer.

  2. Relevant references are given in review (Imyanitov 2009a).

  3. The apex angle of the cone, encompassing the ligand. Apex of the cone—the central atom nucleus.

  4. Instead «amyl alcohol, C5H12O», or rather «isoamyl alcohol, C5H12O», more precisely, «isoamyl alcohol, (CH3)2CHCH2CH2OH».

  5. Unlike many other evolutionary objects the complication in the Periodic System does not occur in time, but it does with the increasing nuclear charge, the number of electronic shells in the atom, the number of electrons in the shell.

  6. That is, by changes in the outer electron shell.

  7. This theory is not related to the modern understanding of free radicals.

  8. These are the highest-energy occupied molecular orbital (HOMO) and lowest-energy unoccupied orbital (LUMO).

  9. Relocation of lanthanides and actinides to the bottom of the Long Periodic Table results in appearance of IUPAC-recommended conventional Medium-long Periodic Table.

  10. Strong argument supporters irreducibility are considered mathematical theorems Gödel. However, this theorems asserts only that higher can not be derived from a lower in full volume.

  11. It's really incredible, and in oscillatory reaction is not happening. Concentration of the intermediate specie is oscillated. The intermediate is then accumulated, then consumed. Here, too, had to overcome the stereotype: the principle of quasi-stationary concentrations of intermediate species are widely used in the analysis of the reaction mechanisms kinetics, but only under certain restrictions.

  12. It goes autocatalytically: initially takes place HSO3  + H+ → H2SO3, because H2SO3 reacts faster with BrO 3 than HSO3 (Rabai et al. 1990).

References

  • Barragán, D.: Essentials of kinetics and thermodynamics for understanding chemical oscillations. Found. Chem. 17, 93–106 (2015)

    Article  Google Scholar 

  • Bellu, E.: The dialectical significance of chemistry in the work of Friedrich Engels. Philosophie et Logique 17, 163–169 (1973)

    Google Scholar 

  • Belousov, B.P.: A periodic reaction and its mechanism. Sbornik refer. po radiats. med. sa 1958. Medgiz, Moscow, 145–147 (1959) (in Russian)

  • Belousov, B.P.: A periodic reaction and its mechanism. In: Autowave Processes in Systems with Diffusion. Inst. Prikl. Fiz. Akad. Nauk SSSR, Gor’kij, 176–186 (1981) (in Russian)

  • Belousov, B.P.: A periodic reaction and its mechanism. Khimiya i zhizn’ 7, 65–70 (1982) (in Russian)

    Google Scholar 

  • Belousov, B.P.: A periodic reaction and its mechanism. In: Field, R.J., Burger, M. (eds.) Oscillations and Traveling Waves in Chemical Systems, pp. 605–615. Wiley, New York etc (1985)

    Google Scholar 

  • Bent, H.: New Ideas in Chemistry from Fresh Energy for the Periodic Law. AuthorHouse, Bloomington, IN (2006)

    Google Scholar 

  • Bernard’s Periodic Table of the Elements in Three Dimensional Form. The Chemogenesis web book, The INTERNET Database of Periodic Tables. Curator: M.R. Leach (2003). http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=24. Accessed 10 Aug 2014

  • Bernard, H.: Periodic Table of the elements in three dimensional form. United States Patent 7,297,000 (2007)

  • Bowers, P., Noyes, R.M.: Gas evolution oscillators. In: Field, R.J., Burger, M. (eds.) Oscillations and Traveling Waves in Chemical Systems, pp. 473–492. Wiley, New York (1985)

    Google Scholar 

  • Bray, W.C.: A periodic reaction in homogeneous solution and its relation to catalysis. J. Am. Chem. Soc. 43, 1262–1267 (1921)

    Article  Google Scholar 

  • Budrejko, N.A.: Philosophical Problems of Chemistry. Vysshaya shkola, Moscow (1970) (in Russian)

    Google Scholar 

  • Burger, M., Bujdoso, E.: Oscillating chemical reactions as an example of the development of a subfield of science. In: Field, R.J., Burger, M. (eds.) Oscillations and Traveling Waves in Chemical Systems, pp. 565–604. Wiley, New York (1985)

    Google Scholar 

  • Chiusoli, G.P., Costa, M., Cuccia, L., Gabriele, B., Salerno, G., Veltri, L.: Carbon dioxide effect on palladium-catalyzed sequential reactions with carbon monoxide, acetylenic compounds and water. J. Mol. Catal. A 204–205, 133–142 (2003)

    Article  Google Scholar 

  • Crook, C.J., Smith, A., Jones, R.A.L., Ryan, A.J.: Chemically induced oscillations in a pH-responsive hydrogel. Phys. Chem. Chem. Phys. 4, 1367–1369 (2002)

    Article  Google Scholar 

  • Donlon, L., Parker, J., Novakovic, K.: Oscillatory carbonylation of phenylacetylene in the absence of externally supplied oxidant. React. Kinet. Mech. Catal. 112, 1–13 (2014)

    Article  Google Scholar 

  • Donlon, L., Novakovic, K.: Oscillatory carbonylation using alkyne-functionalised poly(ethylene glycol). Chem. Commun. (2014). doi:10.1039/c4cc01548g

    Google Scholar 

  • Engels, F.: Dialectics of Nature (1883). http://www.marxists.org/archive/marx/works/1883/don/ch02.htm. Accessed 20 Nov 2014

  • Epstein, I.R., Luo, Y.: Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and the oregonator. J. Chem. Phys. 95, 244–254 (1991)

    Article  Google Scholar 

  • Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press, New York, Oxford (1998)

    Google Scholar 

  • Field, R.J., Körös, E., Noyes, R.M.: Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate–cerium–malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)

    Article  Google Scholar 

  • Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)

    Article  Google Scholar 

  • Field, R.J.: Limit cycle oscillations in the reversible oregonator. J. Chem. Phys. 63, 2289–2296 (1975)

    Article  Google Scholar 

  • Field, R.J.: Experimental and mechanistic characterization of bromate-ion-driven chemical oscillations and traveling waves in closed systems. In: Field, R.J., Burger, M. (eds.) Oscillations and Traveling Waves in Chemical Systems, pp. 55–92. Wiley, New York (1985)

    Google Scholar 

  • Field, R.J.: The language of dynamics. J. Chem. Educ. 66, 188–189 (1989)

    Article  Google Scholar 

  • Furrow, S.D.: Chemical oscillators based on iodate ion and hydrogen peroxide. In: Field, R.J., Burger, M. (eds.) Oscillations and Traveling Waves in Chemical Systems, pp. 171–181. Wiley, New York (1985)

    Google Scholar 

  • Gentili, P.L.: Small steps towards the development of chemical artificial intelligent systems. RSC Adv. 3, 25523–25549 (2013)

    Article  Google Scholar 

  • Gorodskii, S.N., Zakharov, A.N., Kulik, A.V., Bruk, L.G., Temkin, O.N.: Oxidative carbonylation of alkynes in an oscillation mode: I. concentration limits for oscillations in the course of phenylacetylene carbonylation and possible mechanisms of the process. Kinet. Catal. 42, 251–263 (2001)

    Article  Google Scholar 

  • Gorodskii, S.N., Kalenova, E.S., Bruk, L.G., Temkin, O.N.: Oxidative carbonylation of alkynes in self-oscillating mode. Effect of the nature of substrates on the dynamic behavior of reaction system. Russ. Chem. Bull. Int. Ed. 52, 1534–1543 (2003)

    Article  Google Scholar 

  • Gorodskii, S.N., Novakovic, K.: Concentration oscillations in the processes of oxidative carbonylation of unsaturated compaunds. Part 1. Processes of oxidative carbonylation of acetylene and phenylacetylene. Vestnik MITKhT 6(4), 3–19 (2011) (in Russian)

    Google Scholar 

  • Gorodskii, S.N.: Concentration oscillations in the processes of oxidative carbonylation of unsaturated compaunds. Part 2. Oxidative carbonylation of alkynes in solutions of palladium halide complexes. Vestnik MITKhT 6(6), 3–18 (2011) (in Russian)

    Google Scholar 

  • Gray, P., Scott, S.K.: Chemical Oscillations and Instabilities. Clarendon Press, Oxford (1994)

    Google Scholar 

  • Griffiths, J.F.: Thermokinetic oscillations in homogeneous gas—phase oxidations. In: Field, R.J., Burger, M. (eds.) Oscillations and Traveling Waves in Chemical Systems, pp. 529–564. Wiley, New York (1985)

    Google Scholar 

  • Grosjean, C., Novakovic, K., Scott, S.K., Whiting, A., Willis, M.J., Wright, A.R.: Product identification and distribution from the oscillatory versus non-oscillatory palladium(II) iodide-catalysed oxidative carbonylation of phenylacetylene. J. Mol. Catal. A. 284, 33–39 (2008)

    Article  Google Scholar 

  • Györgyi, L., Turanyi, T., Field, R.J.: Mechanistic details of the oscillatory Belousov–Zhabotinskii reaction. J. Phys. Chem. 94, 7162–7170 (1990)

    Article  Google Scholar 

  • Haken, H.: Synergetics: An Introduction, 3rd edn. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  • Harris, G.M., Willard, J.E.: Photochemical reactions in the system methyl iodide-iodine-methane. The reaction C14H3 + CH4 → C14H4 + CH3. J. Am. Chem. Soc. 76, 4678–4687 (1954)

    Article  Google Scholar 

  • Harvey, E.N.: History of Luminescence, from the Earliest Times Until 1900. American Philosophical Society, Philadelphia (1957)

    Book  Google Scholar 

  • Hoffmann, R.: Building bridges between inorganic and organic chemistry (nobel lecture). Angew. Chem. Int. Ed. 21, 711–724 (1982)

    Article  Google Scholar 

  • Hor, T.S.A., Tan, A.L.C.: The isolobal theory and organotransition metal chemistry—some recent advances. J. Coord. Chem. 20, 31–330 (1989)

    Google Scholar 

  • Houlgate, S., Baur, M. (eds.): A Companion to Hegel. Wiley, Malden, MA (2011)

    Google Scholar 

  • Howse, J.R., Topham, P., Crook, C.J., Gleeson, A.J., Bras, W., Jones, R.A.L., Ryan, A.J.: Reciprocating power generation in a chemically driven synthetic muscle. Nano Lett. 6, 73–77 (2006)

    Article  Google Scholar 

  • Imbihl, R.: Non-linear dynamics in catalytic reactions. Handb. Surf. Sci. 3, 341–428 (2008)

    Article  Google Scholar 

  • Imyanitov, N.S.: Common approach to the determination of steric effects in coordination and organic chemistry: conical angles of substituents at carbon atom. J. Org. Chem. USSR (Eng. Transl.) 23, 827–831 (1987)

    Google Scholar 

  • Imyanitov, N.S., Shmelev, G.I.: Unified system of steric constants of organic substituents on various elements. Conic angles and degrees of screening. Zh. Obshch. Khim. 57, 2161–2167 (1987) (in Russian)

    Google Scholar 

  • Imyanitov, N.S.: The general chemical system of electronic parameters on the Hammet scale. Russ. J. Coord. Chem. (Transl. Coord. Khim.) 22, 827–836 (1996)

    Google Scholar 

  • Imyanitov, N.S.: Mathematical description of dialectic regular trends in the periodic system. Russ. J. Gen. Chem. 69, 509–517 (1999a)

    Google Scholar 

  • Imyanitov, N.S.: Equations of new type for the description and simple calculation of electronic parameters of the neutral ligands of ElRn type. Russ. J. Coord. Chem. 25, 293–299 (1999b)

    Google Scholar 

  • Imyanitov, N.S.: Dialectic functions for description and prediction of proton affinity and basicity in gas phase. Russ. J. Org. Chem. 37, 1196–1204 (2001a)

    Article  Google Scholar 

  • Imyanitov, N.S.: Inductive effects of ligands or substituents based on any of the sp elements. Russ. J. Coord. Chem. 27, 823–829 (2001b)

    Article  Google Scholar 

  • Imyanitov, N.S.: Interdependence of development and degradation. The principle of the conjugate changes in the properties. Polignozis 4(20), 34–47 (2002) (in Russian)

    Google Scholar 

  • Imyanitov, N.S.: Modification of various functions for description of periodic dependences. Russ. J. Coord. Chem. 29, 46–52 (2003a)

    Article  Google Scholar 

  • Imyanitov, N.S.: Along the rank scale of sciences up to the art. Filosofiya nauki (Novosibirsk) 4(19), 3–17 (2003b) (in Russian)

    Google Scholar 

  • Imyanitov, N.S.: Quantity, quality and opposites: yesterday, today, tomorrow. Filosofiya i Obshchestvo 1, 44–64 (2009a) (in Russian)

    Google Scholar 

  • Imyanitov, N.S.: Repetitions in the evolutions. Filosofiya i Obshchestvo 3, 78–101 (2009b) (in Russian)

    Google Scholar 

  • Imyanitov, N.S.: New basis for describing periodicity. Russ. J. Gen. Chem. 80, 65–68 (2010)

    Article  Google Scholar 

  • Imyanitov, N.S.: Application of a new formulation of the periodic law to predicting the proton affinity of elements. Russ. J. Inorg. Chem. 56, 745–748 (2011a)

    Article  Google Scholar 

  • Imyanitov, N.S.: The periodic law. Formulations, equations, graphic representations. Russ. J. Inorg. Chem. 56, 2183–2200 (2011b)

    Article  Google Scholar 

  • Imyanitov, N.S.: Adequacy of the new formulation of the Periodic Law when fundamental variations occur in blocks and periods. Found. Chem. 16, 235–247 (2014)

    Article  Google Scholar 

  • Imyanitov, N.S.: Spiral as the fundamental representation of the Periodic Law. Blocks of elements as the autonomic parts of the Periodic System. Found. Chem. (2015). doi:10.1007/s10698-015-9246-8

  • Korableva, T.P., Korol’kov, D.V.: Theory of the Periodic System. Izd-vo SPbU, St. Petersburg (2005) (in Russian)

  • Kissimonova, K., Valent, I., Adamcíkova, L., Sevcik, P.: Numerical simulations of the oxygen production in the oscillating Bray–Liebhafsky reaction. Chem. Phys. Lett. 341, 345–350 (2001)

    Article  Google Scholar 

  • Kuraswhov, V.I.: Иcтopия и филocoфия xимии. КДУ, Moscow (2009) (in Russian)

    Google Scholar 

  • Kuznetsov, V.I.: Dialectics in the Development of Chemistry. From the History to the Theory of the Development of Chemistry. Nauka, Moscow (1973) (in Russian)

    Google Scholar 

  • Liesegang, R.E.: Ueber einige Eigenschaften von Gallerten. Naturwissenschaftliche Wochenschr. 11, 353–362 (1896)

    Google Scholar 

  • Longman’s Mural from Festival of Britain. The Chemogenesis web book, The INTERNET Database of Periodic Tables. Curator: M.R. Leach (1951). http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=24. Accessed 10 Aug 2014

  • Mackay, A.L.: From “the dialectics of nature” to the inorganic gene. Found. Chem. 1, 43–56 (1999)

    Article  Google Scholar 

  • Malashkevich, A.V., Bruk, L.G., Temkin, O.N.: New oscillating reaction in catalysis by metal complexes: a mechanism of alkyne oxidative carbonylation. J. Phys. Chem. A 101(51), 9825–9827 (1997)

    Article  Google Scholar 

  • Marxist-Leninist Dialectics in Eight Books, vols. 1–5. Izd-vo Mosk. Gos. Un-ta (1983) (in Russian)

  • Materialistic Dialectics, vols. 1–5. Mysl’, Moscow (1981) (in Russian)

  • Mazurs, E.G.: Graphic Representations of the Periodic System During One Hundred Years, 2nd edn. University of Alabama Press, Ala (1974)

    Google Scholar 

  • Munck af Rosenschöld, P.S.: Regelmässing intermittirendes leuchten des phosphors. Ann. Phys. Chem. 32, 216–217 (1834)

    Article  Google Scholar 

  • Nicolis, G., Prigogin, I.: Self-Organization in Nonequilibrium Systems. From Dissipstive Structures to Order Through Fluctuations. Wiley, New York (1977)

    Google Scholar 

  • Novakovic, K., Grosjean, C., Scott, S.K., Whiting, A., Willis, M.J., Wright, A.R.: Achieving pH and Qr oscillations in a palladium-catalysed phenylacetylene oxidative carbonylation reaction using an automated reactor system. Chem. Phys. Lett. 435, 142–147 (2007)

    Article  Google Scholar 

  • Novakovic, K., Grosjean, C., Scott, S.K., Whiting, A., Willis, M.J., Wright, A.R.: The influence of oscillations on product selectivity during the palladium-catalysed phenylacetylene oxidative carbonylation reaction. Phys. Chem. Chem. Phys. 10(5), 749–753 (2008a)

    Article  Google Scholar 

  • Novakovic, K.,Willis, M.J., Wright, A.R.: Effect of gas-liquid mass transfer rates on the palladium catalysed phenylacetylene oxidative carbonylation reaction. AIChE 100—2008 AIChE Annual Meeting, Conference Proceedings. 700/1–700/2 (2008b)

  • Noyes, R.M.: Mechanisms of same chemical oscillations. J. Phys. Chem. 94, 4404–4412 (1990)

    Article  Google Scholar 

  • Noyes, R.M., Kalachev, L.V., Field, R.J.: Mathematical model of the Bray–Liebhafsky oscillations. J. Phys. Chem. 99, 3514–3520 (1995)

    Article  Google Scholar 

  • Olexova, A., Mrakavova, M., Melichercık, M., Treindl, L.: Oscillatory system I, H2O2, HClO4: the modified form of the Bray–Liebhafsky reaction. J. Phys. Chem. A 114, 7026–7029 (2010)

    Article  Google Scholar 

  • Orlov, V.V.: The history of the human intellect. Part 3: Modern intellect. Izd-vo Permsk. Gos. Univ., Perm’ (1999) (in Russian)

  • Oscillating Chemical Reaction (Belousov–Zhabotinsky) (2007) http://www.youtube.com/watch?v=g3JbDybzYqk. Accessed 27 Oct 2014

  • Parker, J., Novakovic, K.: Influence of water and the reactant addition sequence on palladium(II) iodide-catalyzed phenylacetylene carbonylation. Ind. Eng. Chem. Res. 52, 2520–2527 (2013)

    Article  Google Scholar 

  • Pechenkin, A.A.: World outlook significance of oscillatory chemical reactions. Vestnik Mosk. Un-ta. Series 7. Philosophy 6, 20–35 (2005) (in Russian)

    Google Scholar 

  • Poddubnyj, N.V.: Synergetics: the dialectic of self-organizing systems. Izd-vo Belgor. Gos. Un-ta, Belgorod - Rostov (1999) (in Russian)

  • Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1700 (1968)

    Article  Google Scholar 

  • Rabai, G., Orban, M., Epstein, I.R.: Systematic design of chemical oscillators. 64. Design of pH-regulated oscillators. Acc. Chem. Res. 23, 258–263 (1990)

    Article  Google Scholar 

  • Ren, J., Gao, J., Qu, J., Wei, X., Chen, X., Yang, W.: Nonlinear behavior in Bray–Libhafsky chemical reaction. J. Chil. Chem. Soc. 53, 1620–1623 (2008)

    Article  Google Scholar 

  • Runge, F.F.: Der Bildungstrieb der Stoffe. Oraniemburg, 35 pp (1855). https://archive.org/stream/gri_000033125012666851#page/n0/mode/2up. Accessed 17 July 2015

  • Scerri, E.R.: The Periodic Table: Its Story and Its Significance. Oxford University Press, New York (2007)

    Google Scholar 

  • Scerri, E.: The role of triads in the evolution of the periodic table: past and present. J. Chem. Educ. 85, 585–589 (2008)

    Article  Google Scholar 

  • Scerri, E.R.: A review of research on the history and philosophy of the periodic table. J. Sci. Educ. 12, 4–7 (2011)

    Google Scholar 

  • Schummer, J.: The philosophy of chemistry: from infancy toward maturity. In: Baird, D., Scerri, E., Mcintyre, L. (eds.) Philosophy of Chemistry. Synthesis of a New Discipline, pp. 19–39. Springer, Dordrecht (2006)

    Google Scholar 

  • Schummer, J.: HYLE Bibliography “Philosophy of Chemistry (1991)”. http://www.hyle.org/service/biblio.htm. Accessed 20 July 2014

  • Scott, S.K.: Oscillations, Waves and Chaos in Chemical Kinetics. Oxford Chemistry Primers. Oxford University Press, Oxford (1994)

    Google Scholar 

  • Semishin, V.I.: Principles for the construction and forms of the periodic system. In: 100 Years of the Periodic Law of Chemical Elements. X Celebration Mendeleev Congress, pp. 71–98. Nauka, Moscow (1969) (in Russian)

  • Shiraki, Y., Yoshida, R.: Autonomous intestine-like motion of tubular self-oscillating gel. Angew. Chem. Int. Ed. 51, 6112–6116 (2012)

    Article  Google Scholar 

  • Slin’ko, M.M., Jaeger, N.I.: Oscillatory Heterogeneous Catalytic Systems Studies in Surface Science and Catalysis, vol. 86. Elsevier, Amsterdam (1994)

    Google Scholar 

  • Sneed, M.C., Maynard, J.L.: General College Chemistry, 7th print, vol. 53. Van Nostrand-Reinhold, New York (1944)

    Google Scholar 

  • Spiral & Helical. The Chemogenesis Web Book, The INTERNET Database of Periodic Tables. Curator: M.R. Leach (1951). http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=24. Accessed 8 Aug 2014

  • Spirkin, A.: Fundamentals of Philosophy. Translated from the Russian. Progress Publishers, Moscow (1990). http://webcache.googleusercontent.com/search?q=cache, http://su-ltd.mylivepage.ru/file/2715/6195_Spirkin_Fundamentals_of_Philosophy.djvu. Accessed 23 July 2014

  • van Spronsen, J.W.: The Periodic System of the Chemical Elements. The First One Hundred Years. Elsevier, Amsterdam (1969)

    Google Scholar 

  • Stemwedel J.D.: Why Philosophy of Chemistry? Adventures in Ethics and Science. May 30 (2008). http://scienceblogs.com/ethicsandscience/2008/05/30/why-philosophy-of-chemistry/

  • Stewart, P.J.: A century on from Dmitrii Mendeleev: tables and spirals, noble gases and Nobel prizes. Found. Chem. 9, 235–245 (2007)

    Article  Google Scholar 

  • Stone, F.G.A.: Metal-carbon and metal-metal multiple bonds as ligands in transition-metal chemistry: the isolobal connection. Angew. Chem. Int. 23, 89–99 (1984)

    Article  Google Scholar 

  • Szabo, E., Sevcik, P.: Reexamination of gas production in the Bray − Liebhafsky reaction: what happened to O2 pulses? J. Phys. Chem. A 117, 10604–10614 (2013)

    Article  Google Scholar 

  • Tabony, J.: Historical and conceptual background of self-organization by reactive processes. Biol. Cell 98, 589–602 (2006)

    Article  Google Scholar 

  • Taylor, A.F.: Mechanism and phenomenology of an oscillating chemical reaction. Prog. React. Kinet. 27, 247–325 (2002)

    Article  Google Scholar 

  • Temkin, O.N., Bruk, L.G.: Palladium(II, I, 0) complexes in catalytic reactions of oxidative carbonylation. Kinet. Catal. 44, 601–617 (2003) (in Russian)

    Article  Google Scholar 

  • Temkin, O.N.: Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms. Wiley, Hoboken, NJ (2012)

    Book  Google Scholar 

  • Toth, R., Taylor, A.F.: The tris(2,20-bipyridyl) ruthenium catalysed Belousov–Zhabotinsky reaction. Prog. React. Kinet. Mech. 31, 59–115 (2006)

    Article  Google Scholar 

  • Treindl, L., Noyes, R.M.: A new explanation of the oscillations in the Bray–Liebhafsky reaction. J. Phys. Chem. 97, 11354–11362 (1993)

    Article  Google Scholar 

  • Turanyi, T., Györgyi, L., Field, R.J.: Analysis and simplification of the GTF model of the Belousov–Zhabotinsky reaction. J. Phys. Chem. 97, 1931–1941 (1993)

    Article  Google Scholar 

  • Tyson, J.J.: A quantitative account of oscillations, bistability, and traveling waves in the Belousov–Zhabotinskii reaction. In: Field, R.J., Burger, M. (eds.) Oscillations and Traveling Waves in Chemical Systems, pp. 93–144. Wiley, New York (1985)

    Google Scholar 

  • Valent, I., Adamcikova, L., Sevcík, P.: Simulations of the iodine interphase transport effect on the oscillating Bray–Liebhafsky reaction. J. Phys. Chem. A 102, 7576–7579 (1998)

    Article  Google Scholar 

  • Vavilin, V.A., Zhabotinsky, A.M.: Autocatalytic oxidation of tervalent cerium in the presence of bromate. Kinet. Katal. 10, 83–88 (1969) (in Russian)

    Google Scholar 

  • Viter, V.N.: Chemical Oscillations. Electronic Journal “Chemistry and Chemists” no. 5 (2008). http://chemistryandchemists.narod.ru. Accessed 15 Sept 2014 (in Russian)

  • Wang, S.-G., Schwarz, W.H.E.: Icon of chemistry: the periodic system of chemical elements in the new century. Angew. Chem. Int. Ed. 48, 3404–3415 (2009)

    Article  Google Scholar 

  • Williams, H.L.: Hegel, Heraclitus and Marx’s Dialectic. Harvester Wheatsheaf, New York (1989)

    Google Scholar 

  • Winfree, A.T.: The prehistory of the Belousov–Zhabotinsky oscillator. J. Chem. Educ. 61, 661–663 (1984)

    Article  Google Scholar 

  • Yashin, V.V., Kuksenok, O., Balazs, A.C.: Modeling autonomously oscillating chemo-responsive gels. Prog. Polym. Sci. 35, 155–173 (2010)

    Article  Google Scholar 

  • Yoshida, R.: Self-oscillating gels driven by the Belousov–Zhabotinsky reaction as novel smart materials. Adv. Mater. 22, 3463–3483 (2010)

    Article  Google Scholar 

  • Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970)

    Article  Google Scholar 

  • Zhabotinskii, A.M.: Periodic processes of the oxidation of malonic acid in solution (study of kinetics of Belousov reaction). Biofizika 9, 306–311 (1964a) (in Russian)

    Google Scholar 

  • Zhabotinskii, A.M.: Periodic liquid phase oxidation reactions. Dokl. Akad. Nauk SSSR 157, 392–395 (1964b) (in Russian)

    Google Scholar 

  • Zhabotinskii, A.M.: Concentration Autooscillations. Nauka, Moscow (1974) (in Russian)

    Google Scholar 

  • Zhabotinskii, A.M.: Introduction: the early period of systematic studies of oscillations and waves in chemical systems. In: Field, R.J., Burger, M. (eds.) Oscillations and Traveling Waves in Chemical Systems, pp. 1–6. Wiley, New York (1985)

    Google Scholar 

  • Zhou, H., Liang, E., Zheng, Z., Ding, X., Peng, Y.: Smart polymers based on Belousov–Zhabotinsky reaction. Huaxie Jinzhan 23, 2368–2376 (2011) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naum S. Imyanitov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imyanitov, N.S. Dialectics and synergetics in chemistry. Periodic Table and oscillating reactions. Found Chem 18, 21–56 (2016). https://doi.org/10.1007/s10698-015-9248-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-015-9248-6

Keywords

Navigation