Skip to main content
Log in

COM(3p) Solution of the 2D Hubbard Model: Momentum-Resolved Quantities

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Recently, within the framework of the composite operator method, it has been proposed that a three-pole solution for the two-dimensional Hubbard model (Eur. Phys. J. B 87, 45 (2014)),which is still considered as one of the best candidate model to microscopically describe high- T c cuprate superconductors. The operatorial basis comprise the two Hubbard operators (complete fermionic local basis) and the electronic operator dressed by the nearest- neighbor spin fluctuations. The effectiveness of the approximate solution has been proved through a positive comparison with different numerical methods for various quantities. In this article, after recollecting the main analytical expressions defining the solution and the behavior of basic local quantities (double occupancy and chemical potential) and of the quasi-particle energy dispersions, we resolve and analyze the momentum components of relevant quantities: filling (i.e., the momentum distribution function), double occupancy, and nearest neighbor spin correlation function. The analysis is extended to COM(2p) solutions that will be used as a primary reference. Thanks to this, the role played by the third field, with respect to the two Hubbard ones, in determining the behavior of many relevant quantities and in allowing the extremely good comparison with numerical results is better understood giving a guideline to further improve and, possibly, optimize the application of the COM to the Hubbard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Avella, A.: Eur. Phys. J. B 87, 45 (2014)

    Article  ADS  Google Scholar 

  2. Bednorz, J. G., Müller, K. A.: Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  3. Timusk, T., Statt, B.: Rep. Prog. Phys. 62, 61 (1999)

    Article  ADS  Google Scholar 

  4. Basov, D. N., Woods, S. I., Katz, A. S., Singley, E. J., Dynes, R. C., Xu, M., Hinks, D. G., Homes, C. C., Strongin, M.: Science 283, 49 (1999)

    Article  ADS  Google Scholar 

  5. Orenstein, J., Millis, A.J.: Science 288, 468 (2000)

    Article  ADS  Google Scholar 

  6. Damascelli, A., Hussain, Z., Shen, Z.-X.: Rev.Mod. Phys 75, 473 (2003)

    Article  ADS  Google Scholar 

  7. Shen, K. M., et al.: Science 307, 901 (2005)

    Article  ADS  Google Scholar 

  8. Eschrig, M.: Adv. Phys. 55, 47 (2006)

    Article  ADS  Google Scholar 

  9. Kanigel, A., et al.: Nat. Phys. 2, 447 (2006)

    Article  Google Scholar 

  10. Lee, P. A., Nagaosa, N., Wen, X.-G.: Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  11. Valla, T., Fedorov, A. V., Lee, J., Davis, J. C., Gu, G.D.: Science 314, 1914 (2006)

    Article  ADS  Google Scholar 

  12. Doiron-Leyraud, N., Proust, C., LeBoeuf, D., Levallois, J., Bonnemaison, J.-B., Liang, R. X., Bonn, D. A., Hardy, W. N., Taillefer, L.: Nature 447, 565 (2007)

    Article  ADS  Google Scholar 

  13. LeBoeuf, D., et al: Nature 450, 533 (2007)

    Article  ADS  Google Scholar 

  14. Hossain, M. A., et al.: Nat. Phys. 4, 527 (2008)

    Article  Google Scholar 

  15. Sebastian, S. E., Harrison, N., Palm, E., Murphy, T. P., Mielke, C. H., Liang, R. X., Bonn, D. A., Hardy, W. N., Lonzarich, G. G.: Nature 454, 200 (2008)

    Article  ADS  Google Scholar 

  16. Meng, J. Q., et al.: Nature 462, 335 (2009)

    Article  ADS  Google Scholar 

  17. Laliberte, F., et al.: Nat. Commun 2, 432 (2011)

    Article  ADS  Google Scholar 

  18. Ramshaw, B. J., Vignolle, B., Day, J., Liang, R. X., Hardy, W. N., Proust, C., Bonn, D. A.: Nat. Phys. 7, 234 (2011)

    Article  Google Scholar 

  19. Riggs, S. C., Vafek, O., Kemper, J. B., Betts, J. B., Migliori, A., Balakirev, F. F., Hardy, W. N., Iang, R. X., Bonn, D. A., Boebinger, G. S.: Nat. Phys. 7, 332 (2011)

    Article  Google Scholar 

  20. Sebastian, S. E., Harrison, N., Altarawneh, M. M., Liang, R., Bonn, D. A., Hardy, W. N., Lonzarich, G.G.: Nat. Commun. 2, 471 (2011)

    Article  ADS  Google Scholar 

  21. Sebastian, S. E., Harrison, N., Lonzarich, G. G.: Rep. Prog. Phys. 75 (10), 2501 (2012)

    Article  Google Scholar 

  22. Tremblay, A.-M. S., Kyung, B., Sénéchal, D.: Fizika Nizkikh Temperatur 32, 561 (2006)

    Google Scholar 

  23. Tremblay, A.-M. S., Kyung, B., Sénéchal, D.: Low Temp. Phys. 32, 424 (2006)

    Article  ADS  Google Scholar 

  24. Hubbard, J.: Proc. Roy. Soc. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  25. Strongly Correlated Systems: Numerical Methods. In: Avella, A., Mancini, F. (eds.) Springer Series in Solid-State Sciences, Vol. 176. Springer, Berlin Heidelberg (2013)

  26. Strongly Correlated Systems: Theoretical Methods. In: Avella, A., Mancini, F. (eds.) Springer Series in Solid-State Sciences, Vol. 171. Springer, Berlin Heidelberg (2012)

  27. Mori, H.: Prog. Theor. Phys. 33, 423 (1965)

    Article  ADS  MATH  Google Scholar 

  28. Hubbard, J.: Proc. Roy. Soc. A 277, 237 (1964)

    Article  ADS  Google Scholar 

  29. Hubbard, J.: Proc. Roy. Soc. A 281, 401 (1964)

    Article  ADS  Google Scholar 

  30. Rowe, D. J.: Rev. Mod. Phys 40, 153 (1968)

    Article  ADS  Google Scholar 

  31. Roth, L. M.: Phys. Rev 184, 451 (1969)

    Article  ADS  Google Scholar 

  32. Tserkovnikov, Y. A.: Teor. Mat. Fiz. 49, 219 (1981)

    Article  MathSciNet  Google Scholar 

  33. Tserkovnikov, Y. A.: Teor. Mat. Fiz. 50, 261 (1981)

    MathSciNet  Google Scholar 

  34. Gutzwiller, M. C.: Phys.Rev. Lett 10, 159 (1963)

    Article  ADS  Google Scholar 

  35. Gutzwiller, M. C.: Phys. Rev. 134, A923 (1964)

    Article  ADS  Google Scholar 

  36. Gutzwiller, M. C.: Phys. Rev. 137, A1726 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  37. Brinkman, W. F., Rice, T. M.: Phys. Rev. B 2, 4302 (1970)

    Article  ADS  Google Scholar 

  38. Barnes, S. E. J.Phys. F 6, 1375 (1976)

    Article  ADS  Google Scholar 

  39. Coleman, P.: Phys. Rev. B 29, 3035 (1984)

    Article  ADS  Google Scholar 

  40. Kotliar, G., Ruckenstein, A. E.: Phys.Rev. Lett. 57, 1362 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  41. Kalashnikov, O. K., Fradkin, E. S.: Sov. Phys.JETP 28, 317 (1969)

    ADS  Google Scholar 

  42. Nolting, W.: Z. Phys. 255, 25 (1972)

    Article  ADS  Google Scholar 

  43. Chubukov, A. V., Norman, M. R.: Phys. Rev. B 70, 174505 (2004). and references therein

    Article  ADS  Google Scholar 

  44. Prelovšek, P., Ramšak, A.: Phys. Rev. B 72 (01), 2510 (2005)

    Google Scholar 

  45. Plakida, N. M., Oudovenko, V. S. JETP 104, 230 (2007)

    Article  ADS  Google Scholar 

  46. Metzner, W., Vollhardt, D. Phys. Rev. Lett. 62, 324 (1989)

    Article  ADS  Google Scholar 

  47. Georges, A., Kotliar, G.: Phys. Rev. B 45, 6479 (1992)

    Article  ADS  Google Scholar 

  48. Georges, A., Kotliar, G., Krauth, W., Rozenberg, M. J.: Rev. Mod. Phys 68, 13 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  49. Sadovskii, M. V., Nekrasov, I. A., Kuchinskii, E. Z., Pruschke, T., Anisimov, V. I. Phys Rev. B 72, 155105 (2005)

    Article  ADS  Google Scholar 

  50. Kuchinskii, E. Z., Nekrasov, I. A., Sadovskii, M. V.: JETP Lett. 82, 198 (2005)

    Article  ADS  Google Scholar 

  51. Kuchinskii, E. Z., Nekrasov, I. A., Sadovskii, M. V. : Fizika Nizkikh Temperatur 32, 528 (2006)

    Google Scholar 

  52. Maier, T., Jarrell, M., Pruschke, T., Hettler, M. H.: Rev. Mod. Phys. 77, 1027 (2005)

    Article  ADS  Google Scholar 

  53. Kotliar, G., Savrasov, S. Y., Palsson, G., Biroli, G.: Phys. Rev. Lett. 87, 186401 (2001)

    Article  ADS  Google Scholar 

  54. Hettler, M. H., Tahvildar-Zadeh, A. N., Jarrell, M., Pruschke, T., Krishnamurthy, H. R.: Phys. Rev. B 58, R7475 (1998)

    Article  ADS  Google Scholar 

  55. Sénéchal, D., Perez, D., Pioro-Ladriére, M: Phys. Rev. Lett. 84, 522 (2000)

    Article  ADS  Google Scholar 

  56. Mancini, F., Avella, A.: Adv. Phys. 53, 537 (2004)

    Article  ADS  Google Scholar 

  57. Mancini, F., Avella, A.: Eur. Phys. J. B 36, 37 (2003)

    Article  ADS  Google Scholar 

  58. Avella, A., Mancini, F.: Composite Operator Method (COM) In: Avella, A., Mancini, F. (eds.), Strongly Correlated Systems: Theoretical Methods. Springer Series in Solid-State Sciences Vol. 171, p. 103. Springer, Berlin Heidelberg (2012). doi: 10.1007/978-3-642-21831-6_4

  59. Avella, A., Mancini, F., et al.: Int. J. Mod. Phys. B 12, 81 (1998)

    Article  ADS  Google Scholar 

  60. Avella, A., Mancini, F., et al.: Phys. Rev. B 63, 245117 (2001)

    Article  ADS  Google Scholar 

  61. Avella, A., Mancini, F., et al.: Eur. Phys. J. B 29, 399 (2002)

    Article  ADS  Google Scholar 

  62. Avella, A., Mancini, F., et al.: Phys. Rev. B 67, 115123 (2003)

    Article  ADS  Google Scholar 

  63. Avella, A., Mancini, F., et al.: Eur. Phys. J. B 36, 445 (2003)

    Article  ADS  Google Scholar 

  64. Avella, A., Mancini, F., et al.: Physica C 470, S930 (2010)

    Article  ADS  Google Scholar 

  65. Avella, A., Mancini, F., et al.: J. Phys. Chem. Solids 72, 362 (2011)

    Article  ADS  Google Scholar 

  66. Odashima, S., Avella, A., Mancini, F.: Phys. Rev. B 72, 205121 (2005)

    Article  ADS  Google Scholar 

  67. Avella, A., Mancini, F., Mancini, F. P., Plekhanov, E.: J. Phys. Chem. Solids 72, 384 (2011)

    Article  ADS  Google Scholar 

  68. Avella, A., Mancini, F., Mancini, F. P., Plekhanov, E.: J. Phys.: Conf. Series 273, 012091 (2011)

    ADS  Google Scholar 

  69. Avella, A., Mancini, F., Mancini, F. P., Plekhanov, E.: J. Phys. 646 Conf. Series 391, 012121 (2012)

    Article  Google Scholar 

  70. Avella, A., Mancini, F., Mancini, F. P., Plekhanov, E.: Eur. Phys. J. B 86, 265 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  71. Avella, A., Mancini, F., et al.: Phys. Lett. A. 240, 235 (1998)

    Article  ADS  Google Scholar 

  72. Avella, A., Mancini, F., et al.: Eur. Phys. J. B 20, 303 (2001)

    Article  ADS  Google Scholar 

  73. Avella, A., Mancini, F.: Eur. Phys. J. B 41, 149 (2004)

    Article  ADS  Google Scholar 

  74. Villani, D., Lange, E., Avella, A., Kotliar, G.: Phys. Rev. Lett. 85, 804 (2000)

    Article  ADS  Google Scholar 

  75. Avella, A., Mancini, F., Hayn, R.: Eur. Phys. J. B 37, 465 (2004)

    Article  ADS  Google Scholar 

  76. Plekhanov, E., Avella, A., Mancini, F., Mancini, F. P.: J. Phys.: Conf. Ser. 273, 012147 (2011)

    ADS  Google Scholar 

  77. Avella, A., Mancini, F.: Eur. Phys. J. B 50, 527 (2006)

    Article  ADS  Google Scholar 

  78. Avella, A., Mancini, F., Plekhanov, E.: Eur. Phys. J. B 66, 295 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  79. Plekhanov, E., Avella, A., Mancini, F.: Phys. Rev. B 74, 115120 (2006)

    Article  ADS  Google Scholar 

  80. Plekhanov, E., Avella, A., Mancini, F.: Eur. Phys. J. B 77, 381 (2010)

    Article  ADS  Google Scholar 

  81. Avella, A., Mancini, F., et al.: Solid State Commun. 108, 723 (1998)

    Article  ADS  Google Scholar 

  82. Avella, A., Mancini, F., et al.: Eur. Phys. J. B 32, 27 (2003)

    Article  ADS  Google Scholar 

  83. Avella, A., Mancini, F.: Phys. Rev. B 75, 134518 (2007)

    Article  ADS  Google Scholar 

  84. Avella, A., Mancini, F.: J. Phys. Condens. Matter 19, 255209 (2007)

    Article  ADS  Google Scholar 

  85. Avella, A., Mancini, F.: Acta Phys. Pol. A 113, 395 (2008)

    Google Scholar 

  86. Avella, A., Mancini, F.: J. Phys. Condens. Matter 21, 254209 (2009)

    Article  ADS  Google Scholar 

  87. Capone, M.: private communication

  88. Moreo, A., Scalapino, D. J., Sugar, R. L., White, S. R., Bickers, N. E.: Phys. Rev. B 41, 2313 (1990)

    Article  ADS  Google Scholar 

  89. Sangiovanni, G.: private communication

Download references

Acknowledgments

The author wishes to thank Gerardo Sica for many insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Avella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avella, A. COM(3p) Solution of the 2D Hubbard Model: Momentum-Resolved Quantities. J Supercond Nov Magn 28, 741–750 (2015). https://doi.org/10.1007/s10948-014-2645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2645-6

Keywords

Navigation