Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Extremes
  3. Article
Improving precipitation forecasts using extreme quantile regression
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

On a new extreme value distribution: characterization, parametric quantile regression, and application to extreme air pollution events

06 November 2022

Helton Saulo, Roberto Vila, … George Christakos

Nonparametric extrapolation of extreme quantiles: a comparison study

07 October 2021

Fabiola Banfi, Greta Cazzaniga & Carlo De Michele

Robust bias-correction of precipitation extremes using a novel hybrid empirical quantile-mapping method

19 May 2022

Maike Holthuijzen, Brian Beckage, … Jonathan M. Winter

An evaluation of the consistency of extremes in gridded precipitation data sets

23 January 2019

Ben Timmermans, Michael Wehner, … Harinarayan Krishnan

Bayesian posterior predictive return levels for environmental extremes

31 May 2018

Lee Fawcett & Amy C. Green

Stochastic Modeling of Extreme Precipitation: a Regional Approach

21 October 2019

M. V. Bolgov, I. A. Filippova, … N. V. Osipova

Quantile Regression Based Methods for Investigating Rainfall Trends Associated with Flooding and Drought Conditions

01 September 2019

Salam A. Abbas, Yunqing Xuan & Xiaomeng Song

A probabilistic gridded product for daily precipitation extremes over the United States

28 February 2019

Mark D. Risser, Christopher J. Paciorek, … William D. Collins

INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles

25 May 2018

Thomas Opitz, Raphaël Huser, … Håvard Rue

Download PDF
  • Open Access
  • Published: 16 July 2019

Improving precipitation forecasts using extreme quantile regression

  • Jasper Velthoen  ORCID: orcid.org/0000-0003-0419-25081,
  • Juan-Juan Cai1,
  • Geurt Jongbloed1 &
  • …
  • Maurice Schmeits2 

Extremes volume 22, pages 599–622 (2019)Cite this article

  • 765 Accesses

  • 6 Citations

  • Metrics details

Abstract

Aiming to estimate extreme precipitation forecast quantiles, we propose a nonparametric regression model that features a constant extreme value index. Using local linear quantile regression and an extrapolation technique from extreme value theory, we develop an estimator for conditional quantiles corresponding to extreme high probability levels. We establish uniform consistency and asymptotic normality of the estimators. In a simulation study, we examine the performance of our estimator on finite samples in comparison with a method assuming linear quantiles. On a precipitation data set in the Netherlands, these estimators have greater predictive skill compared to the upper member of ensemble forecasts provided by a numerical weather prediction model.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Beirlant, J., Wet, T.D., Goegebeur, Y.: Nonparametric estimation of extreme conditional quantiles. J. Stat. Comput. Simul. 74(8), 567–580 (2004)

    Article  MathSciNet  Google Scholar 

  • Bentzien, S., Friederichs, P.: Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution nwp model cosmo-de. Weather Forecast. 27(4), 988–1002 (2012)

    Article  Google Scholar 

  • Bentzien, S., Friederichs, P.: Decomposition and graphical portrayal of the quantile score. Q. J. Roy. Meteorol. Soc. 140(683), 1924–1934 (2014)

    Article  Google Scholar 

  • Buishand, T., de Haan, L., Zhou, C.: On spatial extremes: with application to a rainfall problem. Ann. Appl. Stat. 2, 624–642 (2008)

    Article  MathSciNet  Google Scholar 

  • Coles, S., Tawn, J.: Modelling extremes of the areal rainfall process. J. R. Stat. Soc. Ser. B. 58, 329–347 (1996)

    MathSciNet  MATH  Google Scholar 

  • Daouia, A., Gardes, L., Girard, S.: On kernel smoothing for extremal quantile regression. Bernoulli 19(5B), 2557–2589 (2013)

    Article  MathSciNet  Google Scholar 

  • Daouia, A., Gardes, L., Girard, S., Lekina, A.: Kernel estimators of extreme level curves. Test 20(2), 311–333 (2011)

    Article  MathSciNet  Google Scholar 

  • Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. Ser. B Methodol. 52(3), 393–442 (1990)

    MathSciNet  MATH  Google Scholar 

  • De Haan, L., Ferreira, A.: Extreme Value Theory: an Introduction. Springer, Berlin (2007)

    MATH  Google Scholar 

  • Gardes, L., Girard, S.: Conditional extremes from heavy-tailed distributions: an application to the estimation of extreme rainfall return levels. Extremes 13(2), 177–204 (2010)

    Article  MathSciNet  Google Scholar 

  • Gardes, L., Girard, S., Lekina, A.: Functional nonparametric estimation of conditional extreme quantiles. J. Multivar. Anal. 101(2), 419–433 (2010)

    Article  MathSciNet  Google Scholar 

  • Gardes, L., Stupfler, G.: An integrated functional Weissman estimator for conditional extreme quantiles. REVSTAT - Statistical Journal 17(1), 109–144 (2019)

    MathSciNet  Google Scholar 

  • Goegebeur, Y., Guillou, A., Osmann, M.: A local moment type estimator for the extreme value index in regression with random covariates. Can. J. Stat. 42 (3), 487–507 (2014)

    Article  MathSciNet  Google Scholar 

  • Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  • Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  • Kong, E., Linton, O., Xia, Y.: Uniform Bahadur representation for local polynomial estimates of M-regression and its application to the additive model. Econ. Theory 26(5), 1529–1564 (2010)

    Article  MathSciNet  Google Scholar 

  • Martins-Filho, C., Yao, F., Torero, M.: Nonparametric estimation of conditional value-at-risk and expected shortfall based on extreme value theory. Econ. Theory 34(1), 23–67 (2018)

    Article  MathSciNet  Google Scholar 

  • Rényi, A.: On the theory of order statistics. Acta Mathematica Academiae Scientiarum Hungarica 4(3-4), 191–231 (1953)

    Article  MathSciNet  Google Scholar 

  • Wang, H.J., Li, D.: Estimation of extreme conditional quantiles through power transformation. J. Am. Stat. Assoc. 108(503), 1062–1074 (2013)

    Article  MathSciNet  Google Scholar 

  • Wang, H.J., Li, D., He, X.: Estimation of high conditional quantiles for heavy-tailed distributions. J. Am. Stat. Assoc. 107(500), 1453–1464 (2012)

    Article  MathSciNet  Google Scholar 

  • Wilks, D.S.: Statistical methods in the atmospheric sciences. Academic Press, New York (2011)

    Google Scholar 

  • Yu, K., Jones, M.: Local linear quantile regression. J. Am. Stat. Assoc. 93 (441), 228–237 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the two referees and the associate editor for the constructive comments which led to a substantial improvement of this paper. This work is part of the research project “Probabilistic forecasts of extreme weather utilizing advanced methods from extreme value theory” with project number 14612 which is financed by the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

  1. Department of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628, XE, Delft, Netherlands

    Jasper Velthoen, Juan-Juan Cai & Geurt Jongbloed

  2. R&D Weather and Climate Modelling, The Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297 3731 GA, De Bilt, Netherlands

    Maurice Schmeits

Authors
  1. Jasper Velthoen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Juan-Juan Cai
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Geurt Jongbloed
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Maurice Schmeits
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jasper Velthoen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

This section contains the proofs of Theorems 1–3 in Section 3. Throughout this section, c,c1,c2,… denote positive constants, which are not necessarily the same at each occurrence.

1.1 Proof of Theorem 1

The uniform consistency of \(\hat r\) relies heavily on the uniform Bahadur representation for \(\hat r\). We make use of the Bahadur representation obtained in Kong et al. (2010).

Let ψτ(u) = τ − I(u < 0), that is the right derivative of ρτ at u. Then by Corollary 3.3 and Proposition 1 in Kong et al. (2010), we have

$$ \begin{array}{@{}rcl@{}} &&\sup_{x \in [a,b]} \left| \hat{r}(x) - r(x) + {h_{n}^{2}} c r^{\prime\prime}(x) - \frac{1}{nh_{n}}\sum\limits_{i=1}^{n} \psi_{\tau_{c}}(\epsilon_{i})C_{n, i}(x)K\left( \frac{X_{i}-x}{h_{n}}\right) \right|\\ &=& O_{p}\left( \left\{\frac{\log n}{nh_{n}}\right\}^{3/4}\right) = O_{p}\left( \left\{\frac{\log n}{n^{1-\delta_{h}}}\right\}^{3/4}\right), \end{array} $$

where Cn,i(x) is a Lipschitz continuous function and thus absolutely bounded in [a,b]. Define

$$ {\Delta}_{n}(x) = \frac{1}{nh_{n}}\sum\limits_{i=1}^{n} \psi_{\tau_{c}}(\epsilon_{i})C_{n,i}(x)K\left( \frac{X_{i}-x}{h_{n}}\right). $$

Then, the triangle inequality leads to

$$ \begin{array}{@{}rcl@{}} \sup_{x \in [a,b]} \left|\hat{r}(x) - r(x) \right|&\leq&\sup_{x \in [a,b]} \left|{h_{n}^{2}} c r^{\prime\prime}(x)\right|+ \sup_{x \in [a,b]} \left|{\Delta}_{n}(x)\right|+ O_{p}\left( \left\{\frac{\log n}{n^{1-\delta_{h}}}\right\}^{3/4}\right) \\ &&=O(n^{-2\delta_{h}})+\sup_{x \in [a,b]} \left|{\Delta}_{n}(x)\right|+ O_{p}\left( \left\{\frac{\log n}{n^{1-\delta_{h}}}\right\}^{3/4}\right). \end{array} $$
(12)

The last equality follows from the fact that r″ is uniformly bounded by Assumption A1.

Next, we show that, there exists a \(\delta _{C}\in (0, \frac {1}{2}-\delta _{h})\) such that

$$ \sup_{x \in [a,b]} \left|{\Delta}_{n}(x)\right| = o_{p}(n^{-\delta_{C}}). $$
(13)

Define \( T_{i}(x):= h_{n} K\left (\frac {X_{i}-x}{h_{n}}\right )C_{n, i}(x)\). Then for any x,y ∈ [a,b], by the triangle inequality and the Lipschitz continuity of K, we have

$$ \begin{array}{@{}rcl@{}} &&\left|T_{i}(x)-T_{i}(y)\right|= h_{n} \left|K\left( \frac{X_{i}-x}{h_{n}}\right)C_{n, i}(x) - K\left( \frac{X_{i}-y}{h_{n}}\right)C_{n,i}(y)\right| \\ &&\leq h_{n} |C_{n, i}(x)|\left|K\left( \frac{X_{i}-x}{h_{n}}\right) - K\left( \frac{X_{i}-y}{h_{n}}\right)\right| + h_{n}K\left( \frac{X_{i}-y}{h_{n}}\right)|C_{n, i}(x) - C_{n,i}(y)|\\ &&\leq c_{1}\left|x-y\right| + c_{2} h_{n} |x-y|\sup_{u\in [-1,1]}K(u)\\ &&\leq c|x-y|. \end{array} $$

Note that the constant c does not depend on i, that is, the Lipschitz continuity is uniform in i for all Ti’s. Consequently, it follows from that |ψτ(u)| ≤ 1 that,

$$ \begin{array}{@{}rcl@{}} |{\Delta}_{n}(x) - {\Delta}_{n}(y)| = \frac{1}{n{h^{2}_{n}}}\left|\sum\limits_{i=1}^{n} \psi_{\tau_{c}}(\epsilon_{i})(T_{i}(x) - T_{i}(y)) \right| \leq c\frac{|x-y|}{{h_{n}^{2}}}. \end{array} $$

Let \(M_{n} = n^{\delta _{C}+2\delta _{h}}\log n\) and {Ii = (ti,ti+ 1],i = 1,…,Mn} be a partition of (a,b], where \(t_{i+1} - t_{i} = \frac {b-a}{M_{n}}\). Then for t ∈ Ii,

$$ \begin{array}{@{}rcl@{}} |{\Delta}_{n}(t) - {\Delta}_{n}(t_{i})| \leq \frac{c(b-a)}{M_{n} {h_{n}^{2}}}, \end{array} $$

or equivalently,

$$ \begin{array}{@{}rcl@{}} {\Delta}_{n}(t_{i}) - \frac{c(b-a)}{M_{n} {h_{n}^{2}}} \leq {\Delta}_{n}(t) \leq {\Delta}_{n}(t_{i}) + \frac{c(b-a)}{M_{n} {h_{n}^{2}}}. \end{array} $$

Therefore, for n sufficiently large,

$$ \begin{array}{@{}rcl@{}} \mathrm{P}\left( \sup_{x\in[a,b]} |{\Delta}_{n}(x)| > n^{-\delta_{C}} \right) &=& \mathrm{P}\left( \max_{1\leq i \leq M_{n}} \sup_{t\in I_{i}}|{\Delta}_{n}(t)| > n^{-\delta_{C}} \right)\\ &&\leq \sum\limits_{i=1}^{M_{n}} \mathrm{P}\left( \sup_{t\in I_{i}} |{\Delta}_{n}(t)| > n^{-\delta_{C}} \right)\\&& \leq \sum\limits_{i=1}^{M_{n}} \mathrm{P}\left( |{\Delta}_{n}(t_{i})| > n^{-\delta_{C}} - \frac{c(b-a)}{M_{n} {h_{n}^{2}}}\right)\\ &&\leq\sum\limits_{i=1}^{M_{n}} \mathrm{P}\left( |{\Delta}_{n}(t_{i})| > \frac{1}{2}n^{-\delta_{C}} \right)\\ &=&\sum\limits_{i=1}^{M_{n}} \mathrm{P}\left( \left| \sum\limits_{j=1}^{n} \frac{T_{j}(t_{i})\psi_{\tau_{c}}(\epsilon_{j})}{h_{n}} \right| > \frac{1}{2}h_{n}n^{1-\delta_{C}} \right) =: \sum\limits_{i=1}^{M_{n}} P_{i}, \end{array} $$

where the third inequality is due to that \(\frac {c(b-a)}{M_{n} {h_{n}^{2}}}<\frac {1}{2}n^{-\delta _{C}}\) for n sufficiently large. Next, we apply Hoeffding’s inequality to bound Pi. Define

$$ W_{n,i,j}:= \frac{T_{j}(t_{i})\psi_{\tau_{c}}(\epsilon_{j})}{h_{n}}= K\left( \frac{X_{j}-t_{i}}{h_{n}}\right)C_{n, j}(t_{i}) \psi_{\tau_{c}}(\epsilon_{j}). $$

For each i and n, {Wn,i,j, 1 ≤ j ≤ n} is a sequence of i.i.d. random variables. And with probability one, |Wn,j,i|≤ sup− 1≤u≤ 1K(u) supa≤x≤bCn,i(x) =: c3. Moreover, \(\mathbb {E}\left (W_{n,j,i} \right )=0\) because \(\mathbb {E}(\psi _{\tau _{c}}(\epsilon _{j}))=0\) and Xj and 𝜖j are independent. Thus, by Hoeffding’s inequality,

$$ \begin{array}{@{}rcl@{}} P_{i}= \mathrm{P}\left( \left| {\sum}_{j=1}^{n} W_{n,i,j}\right| \geq \frac{1}{2}h_{n}n^{1-\delta_{C}}\right)\leq 2\exp\left( -\frac{n^{1-2\delta_{C}} {h_{n}^{2}}}{8{c_{3}^{2}}} \right)=2\exp\left( -cn^{1- 2 \delta_{h} -2\delta_{C}}\right). \end{array} $$

Note that 1 − 2δh − 2δC > 0 by the choice of δC. Thus, for n →∞,

$$ \mathrm{P}\left( \sup_{x\in[a,b]} |{\Delta}_{n}(x)| > n^{-\delta_{C}}\right) \leq 2M_{n}\exp\left( -cn^{1-2\delta_{h}-2\delta_{C}}\right)\rightarrow 0. $$

Hence, Eq. 2 is proved. Now by choosing δ = δC, we obtain via (1) that,

$$ n^{\delta} \sup_{x\in [a,b]} | \hat{r}_{n}(x) - r(x)| = O(n^{\delta_{C}-2\delta_{h}}) + o_{p}(1) + O_{p}\left( n^{-\frac{3}{4} + \frac{3}{4}\delta_{h} +\delta_{C}}(\log n)^{\frac{3}{4}}\right) = o_{p}(1), $$

due to that \(\delta _{h}\in (\frac {1}{5}, \frac {1}{2})\) and \(\delta _{C}<\frac {1}{2}-\delta _{h}\).

1.2 Proof of Theorem 2

The proof follows a similar line of reasoning as that of Theorem 2.1 in Wang et al. (2012). The uniform consistency of \(\hat r_{n}\) given in Theorem 1 plays a crucial role. Define \(V_{n} := ||\hat {r}_{n}-r||_{\infty } = o_{p}\left (n^{-\delta }\right )\).

Let Ui = FY |X(Yi|Xi) for all 1 ≤ i ≤ n. Then {Ui,i = 1,…,n} constitute i.i.d. random variables from a standard uniform distribution. Recall the definition of ei:

$$ e_{i}=Y_{i}-\hat r_{n}(X_{i})=Q_{Y|X}(U_{i}|X_{i})-\hat r_{n}(X_{i}). $$

Thus, the ordering of {ei,i = 1,…,n} is not necessarily the same as the ordering of {Ui,i = 1,…,n}. The main task of this proof is to show that the kn largest ei’s correspond to the kn largest Ui’s; see Eq. 4. To this aim, we first prove that with probability tending to one, en−j,n for j = 0,…,kn can be decomposed as follows,

$$ e_{n-j,n} = Q_{\epsilon}(U_{i(j)}) + r(X_{i(j)})-\hat r_{n}(X_{i(j)}) \text{ for } j=0,{\ldots} k_{n} , $$
(14)

where i(j) is the index function defined as ei(j) = en−j,n. In view of Eq. ??, it is sufficient to prove that with probability tending to one, Ui(j) > τc jointly for all j = 0,…,kn. Define another index function, \(\tilde {i}(j)\) by \(U_{\tilde {i}(j)} = U_{n-j,n}\). Then it follows for n large enough,

$$ \begin{array}{@{}rcl@{}} \mathrm{P} \left( \cup_{j=0}^{k_{n}} \{ U_{i(j)} < \tau_{c} \}\right) &=& \mathrm{P}\left( \cup_{j=0}^{k_{n}} \{ Y_{i(j)} < Q_{Y|X}(\tau_{c}|X_{i(j)})\} \right)\\ &=& \mathrm{P}\left( \min_{0\leq j \leq k_{n}} \left( Y_{i(j)} - r(X_{i(j)})\right) < 0 \right)\\ &=& \mathrm{P}\left( \min_{0\leq j \leq k_{n}}\left( Y_{i(j)} - \hat{r}_{n}(X_{i(j)}) - r(X_{i(j)}) + \hat{r}_{n}(X_{i(j)})\right) < 0 \right)\\ &&\leq \mathrm{P}\left( \min_{0\leq j \leq k_{n}} e_{n-j,n} - \sup_{x \in [a,b]}|\hat{r}_{n}(x) - r(x)| < 0 \right)\\ &=& \mathrm{P}\left( e_{n-k_{n},n} < V_{n} \right) = 1-\mathrm{P}(e_{n-k_{n},n}\geq V_{n})\\ &&\leq 1- \mathrm{P}\left( \cap_{j=0}^{k_{n}} \{ e_{\tilde{i}(j)} \geq V_{n} \} \right)\\ &=& 1- \mathrm{P}\left( \cap_{j=0}^{k_{n}} \left\{ Q_{\epsilon}(U_{n-j,n}) + r(X_{\tilde{i}(j)}) - \hat{r}_{n}(X_{\tilde{i}(j)}) \geq V_{n} \right\} \right)\\ &&\leq 1- \mathrm{P}\left( Q_{\epsilon}(U_{n-k_{n},n}) \geq 2V_{n} \right), \end{array} $$

where the second equality follows from that QY |X(τc|Xi(j)) = r(Xi(j)) and the last equality follows from (??) and the fact that \(U_{n-k_{n},n} > \tau _{c}\) for n large enough. Then, \(\lim _{n\to \infty } \mathrm {P} \left (\cup _{j=0}^{k_{n}} \{U_{i(j)} < \tau _{c} \}\right ) = 0\) follows from \(Q_{\epsilon }(U_{n-k_{n},n}) \to \infty \) and Vn = op(1) as n →∞. Hence, Eq. 3 is proved.

Next, we show that

$$ \lim_{n\rightarrow\infty}\mathrm{P}\left( \cap_{j=0}^{k_{n}} \{e_{n-j,n}= Q_{\epsilon}(U_{n-j,n})+ r(X_{i(j)})-\hat r_{n}(X_{i(j)})\}\right)=1, $$
(15)

that is the ordering of k largest residuals is determined by the ordering of Ui’s. In view of Eq. 3, it is sufficient to show that with probability tending to one,

$$ \min_{1 \leq i \leq k_{n}} (Q_{\epsilon}(U_{n-i+1,n})-Q_{\epsilon}(U_{n-i,n}))\geq 2\max_{1 \leq i \leq k_{n}}|r(X_{i(j)})-\hat r_{n}(X_{i(j)}|. $$
(16)

By the second order condition given in Eq. ?? and Theorem 2.3.9 in De Haan and Ferreira (2007), for any small δ1,δ2 > 0, and n large enough,

$$ \frac{Q_{\epsilon}(U_{n-i+1,n})} {Q_{\epsilon}(U_{n-i,n})} \geq W_{i}^{\gamma}+A_{0}\left( \frac{1}{1-U_{n-i,n}}\right)W_{i}^{\gamma}\frac{W_{i}^{\rho}-1}{\rho}-\delta_{1}\left|A_{0}\left( \frac{1}{1-U_{n-i,n}}\right)\right|W_{i}^{\gamma+\rho+\delta_{2}}, $$
(17)

for i = 1,…,kn, where \(W_{i}=\frac {1-U_{n-i,n}}{1-U_{n-i+1,n}}\) and \(\lim _{t\rightarrow \infty }A_{0}(t)/A(t)=1\). Observe that \(\log W_{i}= \log \frac {1}{1-U_{n-i+1,n}}-\log \frac {1}{1-U_{n-i,n}} \overset {d}{=}E_{n-i+1,n}-E_{n-i,n}\) with Ei’s i.i.d. standard exponential variables. Thus, by Rènyi’s representation (Rényi 1953), we have

$$ \{W_{i}, 1\leq i\leq k_{n}\}\overset{d}{=}\left\{\exp\left( \frac{E_{i}}{i}\right), 1\leq i\leq k_{n} \right\}. $$

From Proposition 2.4.9 in De Haan and Ferreira (2007), we have \(\frac {U_{n-k_{n},n}}{1-\frac {k_{n}}{n}}\overset {P}{\rightarrow }1\), which implies that \({A_{0}\left (\frac {1}{1-U_{n-k_{n},n}}\right )}=O_{p}\left ({A_{0}\left (\frac {n}{k_{n}}\right )}\right )\). Using the fact that A0 is regularly varying with index \(\mathcal {\rho }\), hence |A0| is ultimately decreasing, we obtain for n sufficiently large and any i = 1,…,kn,

$$ \begin{array}{@{}rcl@{}} \left|A_{0}\left( \frac{1}{1-U_{n-i,n}}\right)\right|&\leq& \left|A_{0}\left( \frac{1}{1-U_{n-k_{n},n}}\right)\right| \\ &=&\left|O_{p}\left( A_{0}\left( \frac{n}{k_{n}}\right)\right)\right|=\left|O_{p}\left( A\left( \frac{n}{k_{n}}\right)\right)\right|=\left|O_{p}\left( \frac{1}{\sqrt{k_{n}}}\right)\right|, \end{array} $$
(18)

by the assumption \(\sqrt {k_{n}}A\left (\frac {n}{k_{n}}\right )\rightarrow \lambda \).

For a sufficiently large u and any kn ≥ 1,

$$ \begin{array}{@{}rcl@{}} &&\mathrm{P}\left( \max_{1\leq i\leq k_{n}}\frac{E_{i}}{i}\leq u\right)=\prod\limits_{i=1}^{k_{n}} \left( 1-e^{-iu}\right)=\exp\left( \sum\limits_{i=1}^{k_{n}}\log \left( 1-e^{-iu}\right) \right)\\ &=&\exp\left( -\sum\limits_{i=1}^{k_{n}}\sum\limits_{j=1}^{\infty} j^{-1}e^{-iuj} \right)\geq \exp\left( -\sum\limits_{i=1}^{k_{n}}e^{-iu}\right)= \exp\left( \frac{1-e^{-ku}}{1-e^{u}}\right), \end{array} $$

which tends to one as u →∞. This implies that

$$ \min_{1\leq i\leq k_{n}}W_{i}^{\rho}\overset{d}{=}\exp\left( \rho \max_{1\leq i\leq k_{n}}\frac{E_{i}}{i}\right)=O_{p}(1). $$
(19)

Thus, combining Eqs. 6, 7 and 8, we have

$$ \begin{array}{@{}rcl@{}} &&\min_{1\leq i\leq k_{n}}\frac{Q_{\epsilon}(U_{n-i+1,n})} {Q_{\epsilon}(U_{n-i,n})}-1 \\ &\geq& \min_{1\leq i\leq k_{n}}W_{i}^{\gamma}\left( 1-\left|O_{p}\left( \frac{1}{\sqrt{k_{n}}}\right) \right| \left( \frac{W_{i}^{\rho}-1}{\rho}+ \delta_{1}W_{i}^{\rho+\delta_{2}} \right)\right)-1\\ &=&\min_{1\leq i\leq k_{n}}W_{i}^{\gamma}\left( 1-\left|O_{p}\left( \frac{1}{\sqrt{k_{n}}}\right)\right|\right)-1 \overset{d}{=}\exp\left( \gamma\frac{E_{1}}{k_{n}}\right)\left( 1-\left|O_{p}\left( \frac{1}{\sqrt{k_{n}}}\right)\right|\right)-1\\ &=&\frac{\gamma E_{1}}{k_{n}}\left( 1-\left|O_{p}\left( \frac{1}{\sqrt{k_{n}}}\right)\right|\right), \end{array} $$

where the third equality follows from that \(\min _{1\leq i\leq k_{n}}\frac {E_{i}}{i}\overset {d}{=}E_{1,k}\overset {d}{=}\frac {E_{1}}{k}\) by Rènyi’s representation. Thus, we obtain that

$$ \begin{array}{@{}rcl@{}} \min_{1 \leq i \leq k_{n}} (Q_{\epsilon}(U_{n-i+1,n})-Q_{\epsilon}(U_{n-i,n})) &\geq& \left( Q_{\epsilon}(U_{n-k_{n},n})\frac{\gamma E_{1}}{k_{n}}\right)\left( 1\!-\left|O_{p}\left( \frac{1}{\sqrt{k_{n}}}\right)\right|\right) \\ &=& \left( \frac{n}{k_{n}}\right)^{\gamma} k_{n}^{-1}|O_{p}(1)|. \end{array} $$

Thus, Eq. 5 is proved by the assumption \(k_{n}^{-1}\left (\frac {n}{k_{n}}\right )^{\gamma }>>n^{-\delta }\) and \(\max _{1 \leq i \leq k_{n}}|r(X_{i(j)})-\hat r_{n}(X_{i(j)}|\leq 2 V_{n}=o_{p}\left (n^{-\delta }\right )\). Intuitively, Eq. 5 means that the difference between two successive upper order statistics of 𝜖 is larger than the error made in the estimation of r(x).

As aforementioned, Eqs. 3 and 5 together lead to Eq. 4, which further implies that with probability tending to one,

$$ \max_{0 \leq j \leq k_{n}} \left|\frac{e_{n-j,n}}{Q_{\epsilon}(U_{n-j,n})}-1 \right| \leq \frac{V_{n}}{Q_{\epsilon}(U_{n-k_{n},n})} =o_{p}\left( n^{-\delta}\left( \frac{k_{n}}{n}\right)^{\gamma}\right). $$
(20)

By the definition of \(\hat {\gamma }_{n}\) and Eq. 9, we can write the estimator as follows,

$$ \begin{array}{@{}rcl@{}} \hat{\gamma}_{n} &=& \frac{1}{k_{n}} \sum\limits_{i=0}^{k_{n}-1}\log \frac{e_{n-i,n}}{e_{n-k_{n},n}}\\ &=& \frac{1}{k_{n}} \sum\limits_{i=0}^{k_{n}-1} \log\frac{Q_{\epsilon}(U_{n-i,n})}{Q_{\epsilon}(U_{n-k_{n},n})} + \left( \frac{1}{k_{n}} \sum\limits_{i=0}^{k_{n}-1}\log \frac{e_{n-i,n}}{Q_{\epsilon}(U_{n-i,n})}-\log \frac{e_{n-k_{n},n}}{Q_{\epsilon}(U_{n-k_{n},n})}\right)\\ &=:& \hat{\gamma}_{H} + o_{p}\left( n^{-\delta}\left( \frac{k_{n}}{n}\right)^{\gamma}\right). \end{array} $$

The first part is the well known Hill estimator and we have by Theorem 3.2.5 in De Haan and Ferreira (2007),

$$ \sqrt{k_{n}}(\hat{\gamma}_{H}-\gamma)) \xrightarrow{d} N\left( \frac{\lambda}{1-\rho},\gamma^{2}\right). $$

Therefore we can conclude,

$$ \sqrt{k_{n}}(\hat{\gamma}_{n} - \gamma) = \sqrt{k_{n}}(\hat{\gamma}_{H}-\gamma) +o_{p}\left( \sqrt{k_{n}}n^{-\delta}\left( \frac{k_{n}}{n}\right)^{\gamma}\right) \xrightarrow{d} N\left( \frac{\lambda}{1-\rho},\gamma^{2}\right), $$

by the assumption that \(k_{n}^{\gamma +1}n^{-\gamma -\delta }\rightarrow 0\).

We remark that the proof for Theorem 2.1 in Wang et al. (2012) isn’t completely rigorous, namely, the proof for (S.1) in the supplementary material of that paper is not right. We fix the problem while proving (9), which is an analogue to (S.1).

1.3 Proof of Theorem 4

Before we proceed with the proof of Theorem 3, we state the asymptotic normality of \(\hat {Q}_{\epsilon }(\tau _{n})\) defined in Eq. ?? in the theorem below.

Theorem 1

Let the conditions of Theorem 2 be satisfied. Assumenpn = o(kn) and\(\log (np_{n}) = o(\sqrt {k_{n}})\),then, asn →∞,

$$ \frac{\sqrt{k_{n}}}{\log(k_{n}/(np_{n}))} \left( \frac{\hat{Q}_{\epsilon}(\tau_{n})}{Q_{\epsilon}(\tau_{n})} -1 \right) \xrightarrow{d} N\left( \frac{\lambda}{1-\rho},\gamma^{2}\right). $$
(21)

Theorem 4 can be proved in the same way as that for Theorem 2 in Wang et al. (2012). For the sake of completeness, we present the proof in this section.

Recall that \(\hat {Q}_{\epsilon }(\tau _{n}) = \left (\frac {k_{n}}{np_{n}} \right )^{\hat {\gamma }_{n}} e_{n-k_{n},n}=:d_{n}^{\hat {\gamma }_{n}} e_{n-k_{n},n}\). First, note that from Theorem 2, we have \(\sqrt {k_{n}}(\hat {\gamma }_{n}-\gamma )=\Gamma +o_{p}(1)\), where Γ is a random variable from \(N\left (\frac {\lambda }{1-\rho },\gamma ^{2}\right )\). Therefore,

$$ \begin{array}{@{}rcl@{}} d_{n}^{\hat{\gamma}_{n}-\gamma}&=&\exp\left( (\hat{\gamma}_{n}-\gamma)\log d_{n}\right)=\exp\left( \frac{\log d_{n}}{\sqrt{k_{n}}} (\Gamma+o_{p}(1)) \right) \\ &=&1+ \frac{\log d_{n}}{\sqrt{k_{n}}}\Gamma+o_{p}(\frac{\log d_{n}}{\sqrt{k_{n}}}), \end{array} $$
(22)

where the last step follows from the assumption that \(\frac {\log d_{n}}{\sqrt {k_{n}}} \to 0\). Second, by Theorem 2.4.1,

$$ \sqrt{k}\left( \frac{Q_{\epsilon}(U_{n-k_{n},n})} {Q_{\epsilon}(1-k_{n}/n)}-1\right)\xrightarrow{d} N(0,\gamma^{2}). $$

In combination with Eq. 9, we have

$$ \begin{array}{@{}rcl@{}} \frac{e_{n-k_{n},n}}{Q_{\epsilon}(1-k_{n}/n)}&=&\frac{e_{n-k_{n},n}}{Q_{\epsilon}(U_{n-k_{n},n})} \cdot\frac{Q_{\epsilon}(U_{n-k_{n},n})}{Q_{\epsilon}(1-k_{n}/n)} =\left( 1+o_{p}\left( n^{-\delta}\left( \frac{k_{n}}{n}\right)^{\gamma}\right)\right)\left( 1+O_{p}\left( \frac{1}{\sqrt{k_{n}}}\right)\right) \\ &=&1+O_{p}\left( \frac{1}{\sqrt{k_{n}}}\right), \end{array} $$
(23)

by the assumption that \(k_{n}^{\gamma +1}n^{-\gamma -\delta }\rightarrow 0\). Last, by the second order condition given in Eq. 7 and Theorem 2.3.9 in De Haan and Ferreira (2007),

$$ \frac{Q_{\epsilon}(1-p_{n})}{Q_{\epsilon}(1-k_{n}/n) d_{n}^{\gamma}}=1+O(A(n/k_{n}))=1+O\left( \frac{1}{\sqrt{k_{n}}}\right). $$
(24)

Finally, combing (22), (23) and (24), we have

$$ \begin{array}{@{}rcl@{}} \frac{\hat{Q}_{\epsilon}(\tau_{n})}{Q_{\epsilon}(\tau_{n})} &=&\frac{d_{n}^{\hat{\gamma}}e_{n-k_{n},n}}{Q_{\epsilon}(1-p_{n})} =d_{n}^{\hat{\gamma}_{n}-\gamma}\frac{e_{n-k_{n},n}}{Q_{\epsilon}(1-k_{n}/n)}\cdot \frac{Q_{\epsilon}(1-k_{n}/n) d_{n}^{\gamma}}{Q_{\epsilon}(1-p_{n})}\\ &=&\left( 1+ \frac{\log d_{n}}{\sqrt{k_{n}}}\Gamma+o_{p}\left( \frac{\log d_{n}}{\sqrt{k_{n}}}\right)\right)\left( 1+O_{p}\left( \frac{1}{\sqrt{k_{n}}}\right) \right)\left( 1+O\left( \frac{1}{\sqrt{k_{n}}}\right)\right)\\ &=&1+ \frac{\log d_{n}}{\sqrt{k_{n}}}\Gamma+o_{p}\left( \frac{\log d_{n}}{\sqrt{k_{n}}} \right), \end{array} $$

by the assumption that dn →∞. Thus, Eq. 21 follows immediately.

1.4 Proof of Theorem 3

By definition of \(\hat {Q}_{Y|X}(\tau _{n}|x)\) and Theorem 1, we have,

$$ \begin{array}{@{}rcl@{}} &&\frac{\sqrt{k_{n}}}{\log\left( \frac{k_{n}}{np_{n}}\right)Q_{\epsilon}(\tau_{n})}\left( \hat{Q}_{Y|X}(\tau_{n}|x) - Q_{Y|X}(\tau_{n}|x)\right)\\ &=&\frac{\sqrt{k_{n}}}{\log\left( \frac{k_{n}}{np_{n}}\right)Q_{\epsilon}(\tau_{n})} \left( \hat{Q}_{\epsilon}(\tau_{n}) - {Q}_{\epsilon}(\tau_{n})+\hat r_{n}(x)-r(x) \right),\\ &=&\frac{\sqrt{k_{n}}}{\log\left( \frac{k_{n}}{np_{n}}\right)Q_{\epsilon}(\tau_{n})} \left( \hat{Q}_{\epsilon}(\tau_{n}) - {Q}_{\epsilon}(\tau_{n})\right)+O_{p}\left( \frac{\sqrt{k_{n}}n^{-\delta}}{\log\left( \frac{k_{n}}{np_{n}}p_{n}^{-\gamma}\right)}\right). \end{array} $$

Thus it follows from Theorem 4 and the assumption \(\frac {\sqrt {k}p_{n}^{\gamma }}{n^{\delta }\log \left (\frac {k_{n}}{np_{n}}\right )} \to 0\) that

$$ \frac{\sqrt{k_{n}}}{\log\left( \frac{k_{n}}{np_{n}}\right)Q_{\epsilon}(\tau_{n})}\left( \hat{Q}_{Y|X}(\tau_{n}|x) - Q_{Y|X}(\tau_{n}|x)\right) \xrightarrow{d} N\left( \frac{\lambda}{1-\rho},\gamma^{2}\right). $$

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Velthoen, J., Cai, JJ., Jongbloed, G. et al. Improving precipitation forecasts using extreme quantile regression. Extremes 22, 599–622 (2019). https://doi.org/10.1007/s10687-019-00355-1

Download citation

  • Received: 24 July 2018

  • Revised: 25 June 2019

  • Accepted: 27 June 2019

  • Published: 16 July 2019

  • Issue Date: December 2019

  • DOI: https://doi.org/10.1007/s10687-019-00355-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Asymptotics
  • Extreme conditional quantile
  • Extreme precipitation
  • Forecast skill
  • Local linear quantile regression
  • Statistical post-processing
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.