Skip to main content
Log in

On a new extreme value distribution: characterization, parametric quantile regression, and application to extreme air pollution events

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Extreme-value distributions are important when modeling weather events, such as temperature and rainfall. These distributions are also important for modeling air pollution events. Particularly, the extreme-value Birnbaum-Saunders regression is a helpful tool in the modeling of extreme events. However, this model is implemented by adding covariates to the location parameter. Given the importance of quantile regression to estimate the effects of covariates along the wide spectrum of a response variable, we introduce a quantile extreme-value Birnbaum-Saunders distribution and its corresponding quantile regression model. We implement a likelihood-based approach for parameter estimation and consider two types of statistical residuals. A Monte Carlo simulation is performed to assess the behavior of the estimation method and the empirical distribution of the residuals. We illustrate the introduced methodology with unpublished real air pollution data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azevedo C, Leiva V, Athayde E, Balakrishnan N (2012) Shape and change point analyses of the Birnbaum-Saunders-t hazard rate and associated estimation. Comput Stat Data Anal 56:3887–3897

    Article  Google Scholar 

  • Balakrishnan N, Kundu D (2019) Birnbaum-Saunders distribution: a review of models, analysis, and applications. Appl Stoch Models Bus Ind 35:4–132

    Article  Google Scholar 

  • Balakrishnan N, Gupta R, Kundu D, Leiva V, Sanhueza A (2011) On some mixture models based on the Birnbaum-Saunders distribution and associated inference. J Stat Plan Inference 141:2175–2190

    Article  Google Scholar 

  • Beirlant J, Caeiro F, Gomes M (2012) An overview and open research topics in statistics of univariate extremes. REVSTAT Stat J 10:1–31

    Google Scholar 

  • Brönnimann S, Neu U (1997) Weekend-weekday differences of near-surface ozone concentrations in Switzerland for different meteorological conditions. Atmos Environ 31:1127–1135

    Article  Google Scholar 

  • Cade BS, Terrell JW, Schroeder RL (1999) Estimating effects of limiting factors with regression quantiles. Ecology 80:311–323

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London

    Book  Google Scholar 

  • Davino C, Furno M, Vistocco D (2014) Quantile regression. Wiley, Chichester

    Book  Google Scholar 

  • Davison AC (2008) Statistical models. Cambridge University Press, Cambridge

    Google Scholar 

  • de Haan L, Ferreira A (2006) Extreme value theory: an introduction. Springer, New York

    Book  Google Scholar 

  • Diaz-Garcia JA, Galea M, Leiva V (2003) Influence diagnostics for multivariate elliptical regression linear models. Commun Stat Theory Methods 32:625–641

    Article  Google Scholar 

  • Efron B, Hinkley DV (1978) Assessing the accuracy of the maximum likelihood estimator: observed vs. expected fisher information. Biometrika 65:457–487

    Article  Google Scholar 

  • Embrechts P, Kluppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, New York

    Book  Google Scholar 

  • Ferreira M, Gomes MI, Leiva V (2012) On an extreme value version of the Birnbaum-Saunders distribution. REVSTAT Stat J 10:181–210

    Google Scholar 

  • Figueroa-Zúñiga JI, Bayes CL, Leiva V, Liu S (2022) Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications. Stat Pap 63:919–942

    Article  Google Scholar 

  • Garcia-Papani F, Leiva V, Uribe-Opazo MA, Aykroyd RG (2018) Birnbaum-Saunders spatial regression models: diagnostics and application to chemical data. Chemom Intell Lab Syst 177:114–128

    Article  CAS  Google Scholar 

  • Gómez-Déniz E, Leiva V, Calderín-Ojeda E, Chesneau C (2022) A novel claim size distribution based on a Birnbaum-Saunders and gamma mixture capturing extreme values in insurance: estimation, regression, and applications. Comput Appl Math 41:171

    Article  Google Scholar 

  • Huerta M, Leiva V, Lillo C, Rodriguez M (2018) A beta partial least squares regression model: diagnostics and application to mining industry data. Appl Stoch Models Bus Ind 34:305–321

    Article  Google Scholar 

  • Huerta M, Leiva V, Liu S, Rodriguez M, Villegas D (2019) On a partial least squares regression model for asymmetric data with a chemical application in mining. Chemom Intell Lab Syst 190:55–68

    Article  CAS  Google Scholar 

  • Jenkinson A (1969) Estimation of maximum floods. World Meteorological Organization, Technical Note 98:183–227

  • Jenkinson A (1955) The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q J R Meteorol Soc 81:58–171

    Article  Google Scholar 

  • Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Langousis A, Carsteanu A, Deidda R (2013) A simple approximation to multifractal rainfall maxima using a generalized extreme value distribution model. Stoch Environ Res Risk Assess 27:1525–1531

    Article  Google Scholar 

  • Leao J, Leiva V, Saulo H, Tomazella V (2018) Incorporation of frailties into a cure rate regression model and its diagnostics and application to melanoma data. Stat Med 37:4421–4440

    Article  Google Scholar 

  • Leiva V, Sanhueza A, Angulo J (2009) A length-biased version of the Birnbaum-Saunders distribution with application in water quality. Stoch Environ Res Risk Assess 23:299–307

    Article  Google Scholar 

  • Leiva V, Rojas E, Galea M, Sanhueza A (2014) Diagnostics in Birnbaum-Saunders accelerated life models with an application to fatigue data. Appl Stoch Models Bus Ind 30:115–131

    Article  Google Scholar 

  • Leiva V, Marchant C, Ruggeri F, Saulo H (2015) A criterion for environmental assessment using Birnbaum-Saunders attribute control charts. Environmetrics 2:463–476

    Article  Google Scholar 

  • Leiva V, Ferreira M, Gomes MI, Lillo C (2016) Extreme value Birnbaum-Saunders regression models applied to environmental data. Stoch Environ Res Risk Assess 30:1045–1058

    Article  Google Scholar 

  • Leiva V, Saulo H, Souza R, Aykroyd RG, Vila R (2021) A new BISARMA time series model for forecasting mortality using weather and particulate matter data. J Forecast 40:346–364

    Article  Google Scholar 

  • Marchant C, Leiva V, Cysneiros FJA (2016) A multivariate log-linear model for Birnbaum-Saunders distributions. IEEE Trans Reliab 65:816–827

    Article  Google Scholar 

  • Marchant C, Leiva V, Cysneiros FJA, Liu S (2018) Robust multivariate control charts based on Birnbaum-Saunders distributions. J Stat Comput Simul 88:182–202

    Article  Google Scholar 

  • Martinez S, Giraldo R, Leiva V (2019) Birnbaum-Saunders functional regression models for spatial data. Stoch Environ Res Risk Assess 33:1765–1780

    Article  Google Scholar 

  • Martins EM, Nunes ACL, Correa SM (2015) Understanding ozone concentrations during weekdays and weekends in the urban area of the city of Rio de Janeiro. J Braz Chem Soc 26:1967–1975

    CAS  Google Scholar 

  • Nascimento FF, Bourguignon M (2020) Bayesian time-varying quantile regression to extremes. Environmetrics 31:e2596

    Google Scholar 

  • Oliveira KLP, Castro BS, Saulo H, Vila R (2022) On a length-biased Birnbaum-Saunders regression model applied to meteorological data. Commun Stat Theory Methods. https://doi.org/10.1080/03610926.2022.2037642

    Article  Google Scholar 

  • Panagoulia D, Economou P, Caroni C (2014) Stationary and nonstationary generalized extreme value modelling of extreme precipitation over a mountainous area under climate change. Environmetrics 25:29–43

    Article  Google Scholar 

  • Pont V, Fontan J (2001) Comparison between weekend and weekday ozone concentration in large cities in France. Atmos Environ 35:1527–1535

    Article  CAS  Google Scholar 

  • Reiss RD, Thomas M (2001) Satistical analysis of extreme values. Birkhauser, Boston

    Google Scholar 

  • Sánchez L, Leiva V, Galea M, Saulo H (2020) Birnbaum-saunders quantile regression models with application to spatial data. Mathematics 8:1000

    Article  Google Scholar 

  • Sánchez L, Leiva V, Galea M, Saulo H (2021) Birnbaum-Saunders quantile regression and its diagnostics with application to economic data. Appl Stoch Models Bus Ind 37:53–73

    Article  Google Scholar 

  • Santana L, Vilca F, Leiva V (2011) Influence analysis in skew-Birnbaum-Saunders regression models and applications. J Appl Stat 38:1633–1649

    Article  Google Scholar 

  • Saulo H, Leiva V, Ziegelmann F, Marchant C (2013) A nonparametric method for estimating asymmetric densities based on skewed Birnbaum-Saunders distributions applied to environmental data. Stoch Environ Res Risk Assess 27:147–149

    Article  Google Scholar 

  • Saulo H, Leao J, Leiva V, Aykroyd RG (2019) Birnbaum-Saunders autoregressive conditional duration models applied to high-frequency financial data. Stat Pap 60:1605–1629

    Article  Google Scholar 

  • Saulo H, Dasilva A, Leiva V, Sánchez L, de la Fuente-Mella H (2022) Birnbaum-Saunders quantile regression and its diagnostics with application to economic data. Stat Neerl 76:124–163

    Article  Google Scholar 

  • Vilca F, Sanhueza A, Leiva V, Christakos G (2010) An extended Birnbaum-Saunders model and its application in the study of environmental quality in Santiago, Chile. Stoch Environ Res Risk Assess 24:771–782

    Article  Google Scholar 

  • Wei Y, Pere A, Koenker R, He X (2006) Quantile regression methods for reference growth charts. Stat Med 25:1369–1382

    Article  Google Scholar 

  • Weisberg S (2014) Applied linear regression. Wiley, Hoboken

    Google Scholar 

  • Yoon S, Kumphon B, Park JS (2015) Spatial modeling of extreme rainfall in northeast Thailand. J Appl Stat 42:1813–1828

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editors and Referees for their comments which led to improve the presentation of this article.

Funding

The present research was funded partially by (i) CNPq (grant number 309674/2020-4), Brazil (H. Saulo) and (ii) FONDECYT grant number 1200525 (V. Leiva and H. Saulo) from the National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science, Technology, Knowledge, and Innovation.

Author information

Authors and Affiliations

Authors

Contributions

Data curation, HS, VLB, JL; formal analysis, HS, RV, VLB, JL, VL, GC; investigation, HS, RV, VLB, JL, VL, GC; methodology, HS, RV, VLB, JL, VL, GC; writing—original draft, HS, RV, VLB, JL, GC; writing review and editing, VL, GC. All authors read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Víctor Leiva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix A: Proofs

Proof of Proposition 2.1

This is immediate from a routine differentiation and hence the proof is omitted. \(\square\)

Proof of Theorem 2.2

Let us denote

$$\begin{aligned}&g(t) = \exp ( -\mathfrak {a}_t )-1 = \exp \Biggl ( -{1\over \alpha }\biggl (x-{1\over x}\biggr ) \Biggr )-1,\\&\quad h(t) = -{\mathfrak {a}''_t\over (\mathfrak {a}'_t)^2} = \dfrac{\displaystyle x+{3/x}}{ \displaystyle ({1/\alpha }) \left( x+{1/x}\right) ^2}, \end{aligned}$$

with \(x=\sqrt{t/\beta }\) and \(\beta ={4Q\Lambda _{\alpha ,q}}\). By Proposition 2.1, when \(\xi =0\), all mode t satisfies \(g(t)=h(t)\). Since

$$\begin{aligned}&g'(t)=-\dfrac{1}{2\alpha \beta x} \biggl (\dfrac{1}{x^2}+1\biggr ) \exp \Biggl (\displaystyle -{1\over \alpha }\biggl (x-{1\over x}\biggr ) \Biggr )<0,\\&g''(t)=\dfrac{1}{4\alpha ^2\beta ^2 x^6} \big (\alpha x(x^2+3)+(x^2+1)^2\big ) \\&\quad \exp \Biggl (\displaystyle -{1\over \alpha }\biggl (x-{1\over x}\biggr ) \Biggr )>0, \forall t>0, \end{aligned}$$

g is strictly decreasing and concave up. Moreover, \(g(\beta )= 0\), \(\lim _{t\rightarrow 0^+}g(t)=\infty\) and \(\lim _{t\rightarrow \infty }g(t)=-1\). Consider

$$\begin{aligned} h'(t) = -\dfrac{\alpha (x^4+6x^2-3)}{2\beta x(x^2+1)^3},\quad h''(t) = \dfrac{3\alpha (x^6+9x^4-9x^2-1)}{4\beta ^2 x^3(x^2+1)^4}. \end{aligned}$$

Note that \(h'(t)=0 \Longleftrightarrow x^4+6x^2-3=0 \Longleftrightarrow x=\sqrt{2\sqrt{3}-3} \Longleftrightarrow t=t_0=\beta (2\sqrt{3}-3),\) in which \(h''(t_0)=3(1.75+\sqrt{3})(80-48\sqrt{3})\alpha /\big (64(2\sqrt{3}-3)^{3/2}\beta ^2\big )<0.\) This implies that \(t_0\) is the unique maximum point of h given by \(h(t_0)=\alpha (({9 + 6 \sqrt{3}})^{1/2})/4\). Furthermore, \(h(t)> 0\) for all \(t>0\), and \(\lim _{t\rightarrow 0^+}h(t)=\lim _{t\rightarrow \infty }h(t)=0\). Notice also that \(h''(t)=0 \Longleftrightarrow \alpha (x^2-1)/(\beta x)=0 \Longleftrightarrow x=1 \Longleftrightarrow t=\beta .\) That is, \(t=\beta\) is an inflection point of h. With the descriptions of g and h mentioned, we expect g and h to intersect at a single point; see Fig. 6. This ensures the existence of a single positive root of \(g(t)=h(t)\). Hence, the QEVBS PDF has a single critical point. Since \(\lim _{t\rightarrow 0^+}f_T(t;\varvec{\theta }_0)=0\) and \(\lim _{t\rightarrow \infty }f_T(t;\varvec{\theta }_0)=0\), the unimodality follows. \(\square\)

Fig. 6
figure 6

Plots of functions g and h for \(\xi =0\)

Proof of Lemma 2.3

This is immediate by applying the L’Hôpital rule and omitted due to reasons of space. \(\square\)

Proof of Theorem 2.4

Let us consider r and h as in Lemma 2.3 and Theorem 2.2, respectively. By Proposition 2.1, when \(\xi \ne 0\), all mode t is a positive root of the equation \(r(t)=h(t)\). Differentiating r with respect to t gives \(r'(t) = (\xi +1) (1+\xi \mathfrak {a}_t)^{(-1/\xi )-2} (\xi (1+\xi \mathfrak {a}_t)^{1/\xi }-1)\mathfrak {a}'_t.\) When \(\xi >0\); \(r'(t)=0 \Longleftrightarrow \mathfrak {a}_t=((1/\xi )^\xi -1)/\xi \Longleftrightarrow t_1=\mathfrak {a}_{(\xi ^{-\xi } -1)/\xi }^{-1},\) which belongs to the interval \((t_\xi ,\infty )\). Since \(\lim _{t\rightarrow t_\xi ^+} r(t)=\infty\) and \(\lim _{t\rightarrow \infty } r(t) = 0\) (Lemma 2.3), it is clear that \(t_1\) is a minimum point of r with minimum value \(r(t_1)=-\xi ^{\xi }\). Moreover, \(r'(t)<0\) (respectively, \(>0\)) \(\Longleftrightarrow\) \(t<t_1\) (respectively, \(t>t_1\)), because \(1+\xi \mathfrak {a}_t>0\) and \(\mathfrak {a}'_t>0\). Hence, there is a single point such that \(r(t)=h(t)\) (Fig. 7 (left-top)), and then the QEVBS PDF has a single critical point. Since \(\lim _{t\rightarrow t_\xi ^+} f_T(t;\varvec{\theta }_\xi )=\lim _{t\rightarrow \infty } f_T(t;\varvec{\theta }_\xi ) = 0\), the unimodality stated in (i) follows.

When \(\xi =-1\); \(r(t)=1\) (Lemma 2.3). Since h is a positive function with maximum value \(h(t_0)=\alpha (\sqrt{9 + 6 \sqrt{3}}\,)/4\) in \(t_0=\beta (2\sqrt{3}-3)\), we have (Fig. 7 (right-top)): (a) r and h have no point in common for \(h(t_0)<1\); (b) r and h have a single point in common for \(h(t_0)=1\); and (c) r and h have two points in common for \(h(t_0)>1\). The scenarios (i)-(iii) ensure that the QEVBS PDF has at most two critical points. However, \(\lim _{t\rightarrow 0^+} f_T(t;\varvec{\theta }_\xi ) = 0\) and \(\lim _{t\rightarrow t_\xi ^-} f_T(t;\varvec{\theta }_\xi ) = \mathfrak {a}'_{t_\xi } (>0)\). Thus, the proofs of (ii), (iii), and (iv) follow.

Now, let \(\xi <-1\) (respectively, \(-1<\xi <0\)). In this case, by using an expression stated earlier, see that \(r'(t)>0\) (respectively, \(r'(t)<0\)) for all \(0<t<t_\xi\), because \(1+\xi \mathfrak {a}_t>0\) and \(\mathfrak {a}'_t>0\). When \(\xi <-1\); r is positive, increasing on \((0,t_\xi )\), \(\lim _{t\rightarrow 0^+} r(t)=0\) and \(\lim _{t\rightarrow t_\xi ^-} r(t) = \infty\) (Lemma 2.3). Since h is also positive with maximum value \(h(t_0)\), we have the following scenarios (Fig. 7(left-bottom)): (a) r and h have no point in common for \(r(t_0)>h(t_0)\); (b) r and h have a single point in common for \(r(t_0)\leqslant h(t_0)\); and (c) r and h have two points in common for \(r(t_0)<h(t_0)\). We claim that scenario (b) cannot occur; otherwise, the QEVBS PDF would have a single critical point. Since \(\lim _{t\rightarrow 0^+} f_T(t;\varvec{\theta }_\xi )=0\) and \(\lim _{t\rightarrow t_\xi ^-} f_T(t;\varvec{\theta }_\xi )=\infty\), the QEVBS PDF is forced to have none or at least an even number of critical points, which is a contradiction. This proves the claim. In addition, scenarios (a) and (c) ensure that the QEVBS PDF has zero or two critical points. Nevertheless, \(\lim _{t\rightarrow 0^+} f_T(t;\varvec{\theta }_\xi )=0\) and \(\lim _{t\rightarrow t_\xi ^-} f_T(t;\varvec{\theta }_\xi )=\infty\). Then, the proofs of (v) and (vi) follows. In the remainder of the proof, we consider the last case \(-1<\xi <0\). In this case, r is decreasing on \((0,t_\xi )\), crosses the abscissa at the point \(t_*=\mathfrak {a}_{((\xi +1)^{-\xi }-1)/\xi }^{-1}\) and \(\lim _{t\rightarrow 0^+} r(t)=\infty\) and \(\lim _{t\rightarrow t_\xi ^-} r(t) = -\infty\) (Lemma 2.3). Now, we have the following scenarios (Fig. 7(right-bottom)): (d) r and h have a single point in common; and (e) r and h have three points in common. Both scenarios ensure that the QEVBS PDF has one or three critical points. Since \(\lim _{t\rightarrow 0^+} f_T(t;\varvec{\theta }_\xi ) =0\) and \(\lim _{t\rightarrow t_\xi ^-} f_T(t;\varvec{\theta }_\xi )=0\), the uni- or bimodality stated in (vii) follows. \(\square\)

Fig. 7
figure 7

Plots of functions r and h for (left-top) \(\alpha /\xi \geqslant (1/\sqrt{2\sqrt{3}-3})-\sqrt{2\sqrt{3}-3}\) and \(\xi >0\) –in this case, \(t_\xi \leqslant t_0\)–; (right-top) \(\xi =-1\) –in this case, it is always satisfied that, \(t_\xi > t_0\)–, with three scenarios being highlighted: (a) \(h(t_0)<1\), (b) \(h(t_0)=1\) and (c) \(h(t_0)>1\); (left-bottom) \(\xi <-1\) –in this case, it is always satisfied that, \(t_\xi > t_0\)–, with three scenarios being highlighted: (a) \(r(t_0)>h(t_0)\), (b) \(r(t_0)\leqslant h(t_0)=1\) and (c) \(r(t_0)<h(t_0)\); and (right-bottom) \(-1<\xi <0\) –in this case, it is always satisfied that, \(t_\xi > t_0\)–, with the scenarios (d) and (e) being highlighted

Proof of Proposition 2.5

If \(T\sim \text {QEVBS}(\varvec{\mathbb {\theta }}_\xi )\), then \(\mathbbm {P}(X\leqslant x) = \mathbbm {P}(T\leqslant \mathfrak {a}^{-1}_x) = F_T(\mathfrak {a}^{-1}_x;\varvec{\mathbb {\theta }}_\xi ) {\mathop {=}\limits ^{(2.2)}} F_\mathrm{GEV}(x;0,1,\xi ).\) This proves (i), with (ii) being proved similarly. The proof of (iii) follows by using the property \(\mathfrak {a}_{t/c}(\alpha ,Q)=\mathfrak {a}_{t}(\alpha ,cQ)\). \(\square\)

Proof of Proposition 2.6

If \(X\sim \mathrm{Weibull}(\sigma ,\mu )\), it is well-known that \(\mu (1-\sigma \log (X/\sigma ))\sim \mathrm{GEV}(\mu ,\sigma ,0)\).

Equivalently, \(\mu \log (X/\sigma )\sim \mathrm{GEV}(0,1,0)\). Then, by using (ii) of Proposition 2.5, the proof of (i) follows.

For \(T\sim \text {QEVBS}(\varvec{\mathbb {\theta }}_0)\), by (i) of Proposition 2.5, \(\mathfrak {a}_T\sim \mathrm{GEV}(0,1,0)\). By combining this with the known result given by \(X\sim \mathrm{GEV}(\mu ,\sigma ,0)\) implies \(\sigma \exp (-(X-\mu )/(\mu \sigma ))\sim \mathrm{Weibull}(\sigma ,\mu )\), the proof of (ii) follows.

Let assume that \(T_1 \sim \text {QEVBS}(\varvec{\mathbb {\theta }}_0)\) and \(T_2 \sim \text {QEVBS}(\varvec{\mathbb {\theta }}_0)\) are independent. By (i) of Proposition 2.5, \(\mathfrak {a}_{T_1}\sim \mathrm{GEV}(0,1,0)\) and \(\mathfrak {a}_{T_2}\sim \mathrm{GEV}(0,1,0)\). By combining this result with the known fact \(X_1\sim \mathrm{GEV}(\mu _1,\sigma ,0)\) and \(X_2\sim \mathrm{GEV}(\mu _2,\sigma ,0)\) are independent, then \(X_1-X_2\sim \mathrm{Logistic} (\mu _1-\mu _2,\sigma )\) and the proof of (iii) follows. \(\square\)

1.2 Appendix B: Observed Fisher information matrix

By using the partial derivatives of Sect. 3.2, a simple calculus shows that the elements of the observed Fisher information matrix \(\mathcal{J}(\varvec{\theta }_{\xi })=-\partial ^2\ell (\varvec{\theta }_{\xi };\varvec{t})/\partial \varvec{\theta }_{\xi }\partial \varvec{\theta }_{\xi }^{\top }\) are given as follows:

Case \(\xi \ne 0\). For \(r,s \in \{0,1,\dots,k\},\) we have that

$$\begin{aligned}&{\partial ^2 \ell (\varvec{\theta }_\xi ;\varvec{t})\over \partial \gamma _r\partial \gamma _s} = \sum _{i=1}^{n} \biggl ( {\partial ^2 \mathfrak {a}_{t_i}\over \partial \alpha ^2_i} \biggl ( {\xi -1\over 1+\xi \mathfrak {a}_{t_i}} + {1\over (1+\xi \mathfrak {a}_{t_i})^{(\xi +1)/\xi } } \biggr ) \\&\quad - \biggl ({\partial \mathfrak {a}_{t_i}\over \partial \alpha _i}\biggr )^2 \biggl ( {(\xi -1)\xi \over (1+\xi \mathfrak {a}_{t_i})^2} + { {(\xi +1)}(1+\xi \mathfrak {a}_{t_i})^{1/\xi } \over (1+\xi \mathfrak {a}_{t_i})^{2(\xi +1)/\xi } } \biggr ) \biggr ) {\partial \alpha _i\over \partial \gamma _r} {\partial \alpha _i\over \partial \gamma _s} \\&\quad - \sum _{i=1}^{n} {1\over \mathfrak {a}_{t_i}} \left( {1\over \mathfrak {a}_{t_i}}\, {\partial \mathfrak {a}_{t_i}\over \partial \alpha _i} {\partial \mathfrak {a}'_{t_i}\over \partial \alpha _i} - {\partial ^2 \mathfrak {a}'_{t_i}\over \partial \alpha ^2_i} \right) {\partial \alpha _i\over \partial \gamma _r} {\partial \alpha _i\over \partial \gamma _s} \\&\quad + \sum _{i=1}^{n} \biggl ( {\partial \mathfrak {a}_{t_i}\over \partial \alpha _i} \biggl ( {\xi -1\over 1+\xi \mathfrak {a}_{t_i}} + {1\over (1+\xi \mathfrak {a}_{t_i})^{(\xi +1)/\xi } } \biggr ) + {1\over \mathfrak {a}_{t_i}}\, {\partial \mathfrak {a}'_{t_i}\over \partial \alpha _i} \biggr ) {\partial ^2 \alpha _i\over \partial \gamma _r\partial \gamma _s}, \\&{\partial ^2 \ell (\varvec{\theta }_\xi ;\varvec{t})\over \partial \beta _r\partial \beta _s} = \sum _{i=1}^{n} \biggl ( {\partial ^2 \mathfrak {a}_{t_i}\over \partial Q_i^2} \biggl ( {\xi -1\over 1+\xi \mathfrak {a}_{t_i}} + {1\over (1+\xi \mathfrak {a}_{t_i})^{(\xi +1)/\xi }} \biggr )\\&\quad - \left( {\partial \mathfrak {a}_{t_i}\over \partial Q_i} \right) ^2 \biggl ( {(\xi -1)\xi \over (1+\xi \mathfrak {a}_{t_i})^2} + { {(\xi +1)}(1+\xi \mathfrak {a}_{t_i})^{1/\xi } \over (1+\xi \mathfrak {a}_{t_i})^{2(\xi +1)/\xi } } \biggr ) \biggr ) {\partial Q_i\over \partial \beta _r} {\partial Q_i\over \partial \beta _s} \\&\quad - \sum _{i=1}^{n} {1\over \mathfrak {a}_{t_i}} \left( {1\over \mathfrak {a}_{t_i}}\, {\partial \mathfrak {a}_{t_i}\over \partial Q_i} {\partial \mathfrak {a}'_{t_i}\over \partial Q_i} - {\partial ^2 \mathfrak {a}'_{t_i}\over \partial Q_i^2} \right) {\partial Q_i\over \partial \beta _r} {\partial Q_i\over \partial \beta _s} \\&\quad + \sum _{i=1}^{n} \biggl ( {\partial \mathfrak {a}_{t_i}\over \partial Q_i} \biggl ( {\xi -1\over 1+\xi \mathfrak {a}_{t_i}} + {1\over (1+\xi \mathfrak {a}_{t_i})^{(\xi +1)/\xi }} \biggr ) + {1\over \mathfrak {a}_{t_i}}\, {\partial \mathfrak {a}'_{t_i}\over \partial Q_i} \biggr ) {\partial ^2 Q_i\over \partial \beta _r\partial \beta _s}, \\&{\partial ^2 \ell (\varvec{\theta }_\xi ;\varvec{t})\over \partial \gamma _s\partial \beta _r} = \sum _{i=1}^{n} \biggl ( {\partial ^2 \mathfrak {a}_{t_i}\over \partial \alpha _i \partial Q_i} \biggl ( {\xi -1\over 1+\xi \mathfrak {a}_{t_i}} + {1\over (1+\xi \mathfrak {a}_{t_i})^{(\xi +1)/\xi } } \biggr )\\&\quad - {\partial \mathfrak {a}_{t_i}\over \partial \alpha _i} {\partial \mathfrak {a}_{t_i}\over \partial Q_i} \biggl ( {(\xi -1)\xi \over (1+\xi \mathfrak {a}_{t_i})^2} + { {(\xi +1)}(1+\xi \mathfrak {a}_{t_i})^{1/\xi } \over (1+\xi \mathfrak {a}_{t_i})^{2(\xi +1)/\xi } } \biggr ) \biggr ) {\partial \alpha _i\over \partial \gamma _s} {\partial Q_i\over \partial \beta _r} \\&\quad - \sum _{i=1}^{n} {1\over \mathfrak {a}_{t_i}} \left( {1\over \mathfrak {a}_{t_i}}\, {\partial \mathfrak {a}_{t_i}\over \partial \alpha _i} {\partial \mathfrak {a}'_{t_i}\over \partial Q_i} - {\partial ^2 \mathfrak {a}'_{t_i}\over \partial \alpha _i\partial Q_i} \right) {\partial \alpha _i\over \partial \gamma _s} {\partial Q_i\over \partial \beta _r}, \end{aligned}$$

with

$$\begin{aligned}&{\partial ^2 \mathfrak {a}_{t_i}\over \partial \alpha ^2_i} = {\mathfrak {a}_{t_i}\over \alpha _i^2} - {1\over \alpha _i}\, {\partial \mathfrak {a}_{t_i}\over \partial \alpha _i} - {t_i \over \phi _i}\, {\partial \phi _i \over \partial \alpha _i}\, {\partial \mathfrak {a}'_{t_i}\over \partial \alpha _i} + {t_i \mathfrak {a}'_{t_i}\over \phi _i} \left( {1\over \phi _i}\, \left( {\partial \phi _i \over \partial \alpha _i}\right) ^2 - {\partial ^2\phi _i \over \partial \alpha _i^2} \right) , \\&{\partial ^2 \mathfrak {a}_{t_i}\over \partial \alpha _i\partial Q_i} = -{t_i \over \phi _i}\, {\partial \phi _i \over \partial Q_i}\, {\partial \mathfrak {a}'_{t_i}\over \alpha _i} + {t_i\mathfrak {a}'_{t_i}\over \phi _i} \left( {1\over \phi _i}\,{\partial \phi _i \over \partial \alpha _i}\,{\partial \phi _i \over \partial Q_i} - {\partial ^2\phi _i \over \partial \alpha _i\partial Q_i} \right) , \\&{\partial ^2 \mathfrak {a}_{t_i}\over \partial Q_i^2} = -{t_i \over \phi _i}\, {\partial \phi _i \over \partial Q_i}\, {\partial \mathfrak {a}'_{t_i}\over \partial Q_i} + {t_i \mathfrak {a}'_{t_i} \over \phi _i} \left( {1\over \phi _i}\, \left( {\partial \phi _i \over \partial Q_i}\right) ^2 - {\partial ^2\phi _i \over \partial Q_i^2} \right) , \\&{\partial ^2 \mathfrak {a}'_{t_i}\over \partial \alpha ^2_i} = {\mathfrak {a}'_{t_i}\over \alpha _i^2} - {1\over \alpha _i}\, {\partial \mathfrak {a}'_{t_i}\over \partial \alpha _i} - {1\over 4t_i \phi _i}\, {\partial \phi _i \over \partial \alpha _i}\, {\partial \mathfrak {a}_{t_i}\over \partial \alpha _i}\\&\quad + {\mathfrak {a}_{t_i}\over 4t_i \phi _i^2}\, \left( {1\over \phi _i}\, \left( {\partial \phi _i \over \partial \alpha _i}\right) ^2 - {\partial ^2\phi _i \over \partial \alpha _i^2} \right) , \\&{\partial ^2 \mathfrak {a}'_{t_i}\over \partial \alpha _i\partial Q_i} = -{1 \over 4t_i \phi _i}\, {\partial \phi _i \over \partial Q_i}\, {\partial \mathfrak {a}_{t_i}\over \alpha _i} + {\mathfrak {a}_{t_i}\over 4t_i \phi _i}\, \left( {1\over \phi _i}\,{\partial \phi _i \over \partial \alpha _i}\,{\partial \phi _i \over \partial Q_i} - {\partial ^2\phi _i \over \partial \alpha _i\partial Q_i} \right) , \\&{\partial ^2 \mathfrak {a}'_{t_i}\over \partial Q_i^2} = -{1 \over 4t_i \phi _i}\, {\partial \phi _i \over \partial Q_i}\, {\partial \mathfrak {a}_{t_i}\over \partial Q_i} + {\mathfrak {a}_{t_i} \over 4t_i\phi _i}\, \left( {1\over \phi _i}\, \left( {\partial \phi _i \over \partial Q_i}\right) ^2 - {\partial ^2\phi _i \over \partial Q_i^2} \right) . \end{aligned}$$

As in Sect. 3.2, we adopt the notation \(\phi _i=4Q_i/\Lambda _{\alpha _i,q}\), where \(\Lambda _{\alpha _i,q}=(\alpha _i z_q +({\alpha ^2_i z_q^2+4})^{1/2})^2\). Hence,

$$\begin{aligned} {\partial ^2\phi _i\over \partial \alpha _i^2} = -{2z_q\over \sqrt{\alpha ^2_i z_q^2+4}} \left( {\partial \phi _i\over \partial \alpha _i} - \phi _i\, {\alpha _i z_q^2\over \alpha _i^2z_q^2+4} \right) , \quad {\partial ^2\phi _i\over \partial \alpha _i\partial Q_i}={1\over Q_i}\,{\partial \phi _i\over \partial \alpha _i}, \quad {\partial ^2\phi _i\over \partial Q_i^2}=0. \end{aligned}$$

Furthermore, by using the relation stated in (3.1), we have

$$\begin{aligned}&{\partial ^2 Q_i\over \partial \beta _0^2} = -\frac{g''(Q_i){\textbf {}}}{(g'(Q_i))^3}, \quad {\partial ^2 Q_i\over \partial \beta _0 \partial \beta _r} = -\frac{g''(Q_i){\textbf {}}}{(g'(Q_i))^3}\, x_{ir}, \\&\quad {\partial ^2 Q_i\over \partial \beta _r\partial \beta _s} = -\frac{g''(Q_i){\textbf {}}}{(g'(Q_i))^3}\, x_{ir} x_{is}, \\&{\partial ^2 \alpha _i\over \partial \gamma _0^2} = -\frac{h''(\alpha _i)}{(h'(\alpha _i))^3}, \quad {\partial ^2 \alpha _i\over \partial \gamma _0 \partial \gamma _r} = -\frac{h''(\alpha _i)}{(h'(\alpha _i))^3}\, w_{ir}, \\&\quad {\partial ^2 \alpha _i\over \partial \gamma _r\partial \gamma _s} = -\frac{h''(\alpha _i)}{(h'(\alpha _i))^3}\, w_{ir} w_{is}. \end{aligned}$$

Case \(\xi = 0\). For \(r,s\in \{0,1,\dots ,k\}\), we get

$$\begin{aligned}&{\partial ^2 \ell (\varvec{\theta }_0;\varvec{t})\over \partial \gamma _r \partial \gamma _s} = \sum _{i=1}^{n} \biggl ( {\partial ^2 \mathfrak {a}_{t_i}\over \partial \alpha ^2_i}\, (\exp (-\mathfrak {a}_{t_i})-1) - \left( {\partial \mathfrak {a}_{t_i}\over \partial \alpha _i}\right) ^2\\&\quad \exp (-\mathfrak {a}_{t_i}) - {1\over \mathfrak {a}^2_{t_i}}\, {\partial \mathfrak {a}_{t_i}\over \partial \alpha _i} {\partial \mathfrak {a}'_{t_i}\over \partial \alpha _i} + {1\over \mathfrak {a}_{t_i}}\, {\partial ^2 \mathfrak {a}'_{t_i}\over \partial \alpha ^2_i} \biggr ) {\partial \alpha _i\over \partial \gamma _r} {\partial \alpha _i\over \partial \gamma _s} \\&\quad + \sum _{i=1}^{n} \biggl ({\partial \mathfrak {a}_{t_i}\over \partial \alpha _i}\, (\exp (-\mathfrak {a}_{t_i})-1) +{1\over \mathfrak {a}_{t_i}}\, {\partial \mathfrak {a}'_{t_i}\over \partial \alpha _i}\biggr ) {\partial ^2 \alpha _i\over \partial \gamma _r\partial \gamma _s}, \\&{\partial ^2 \ell (\varvec{\theta }_0;\varvec{t})\over \partial \beta _r\partial \beta _s} = \sum _{i=1}^{n} \biggl ( {\partial ^2 \mathfrak {a}_{t_i}\over \partial Q_i^2} \, (\exp (-\mathfrak {a}_{t_i})-1) - \left( {\partial \mathfrak {a}_{t_i}\over \partial Q_i}\right) ^2\\&\quad \exp (-\mathfrak {a}_{t_i}) - {1\over \mathfrak {a}^2_{t_i}}\, {\partial \mathfrak {a}_{t_i}\over \partial Q_i} {\partial \mathfrak {a}'_{t_i}\over \partial Q_i} + {1\over \mathfrak {a}_{t_i}}\, {\partial ^2 \mathfrak {a}'_{t_i}\over \partial Q_i^2} \biggr ) {\partial Q_i\over \partial \beta _r} {\partial Q_i\over \partial \beta _s} \\&\quad + \sum _{i=1}^{n} \biggl ({\partial \mathfrak {a}_{t_i}\over \partial Q_i} \, (\exp (-\mathfrak {a}_{t_i})-1) +{1\over \mathfrak {a}_{t_i}}\, {\partial \mathfrak {a}'_{t_i}\over \partial Q_i}\biggr ) {\partial ^2 Q_i\over \partial \beta _r\partial \beta _s}, \\&{\partial ^2 \ell (\varvec{\theta }_0;\varvec{t})\over \partial \gamma _s\partial \beta _r} = \sum _{i=1}^{n} \biggl ( {\partial ^2 \mathfrak {a}_{t_i}\over \partial \alpha _i\partial Q_i}\, (\exp (-\mathfrak {a}_{t_i})-1) - {\partial \mathfrak {a}_{t_i}\over \partial \alpha _i} {\partial \mathfrak {a}_{t_i}\over \partial Q_i}\\&\quad \exp (-\mathfrak {a}_{t_i}) - {1\over \mathfrak {a}^2_{t_i}}\, {\partial \mathfrak {a}'_{t_i}\over \partial \alpha _i} {\partial \mathfrak {a}_{t_i}\over \partial Q_i} + {1\over \mathfrak {a}_{t_i}}\, {\partial ^2 \mathfrak {a}'_{t_i}\over \partial \alpha _i\partial Q_i} \biggr ) {\partial \alpha _i\over \partial \gamma _s} {\partial Q_i\over \partial \beta _r}, \end{aligned}$$

where the partial derivatives of \(\mathfrak {a}_{t_i}\), \(\mathfrak {a}'_{t_i}\), \(\alpha _i\), and \(Q_i\)with respect to parameters are as in Case \(\xi \ne 0\).

Notice that all first-order derivatives of the functions involved in computing the elements of the matrix \(\mathcal{J}(\varvec{\theta }_{\xi })\) above are found in Sect. 3.2.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saulo, H., Vila, R., Bittencourt, V.L. et al. On a new extreme value distribution: characterization, parametric quantile regression, and application to extreme air pollution events. Stoch Environ Res Risk Assess 37, 1119–1136 (2023). https://doi.org/10.1007/s00477-022-02318-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-022-02318-8

Keywords

Navigation