Skip to main content
Log in

Kernel estimators of extreme level curves

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

We address the estimation of extreme level curves of heavy-tailed distributions. This problem is equivalent to estimating quantiles when covariate information is available and when their order converges to one as the sample size increases. We show that, under some conditions, these so-called “extreme conditional quantiles” can still be estimated through a kernel estimator of the conditional survival function. Sufficient conditions on the rate of convergence of their order to one are provided to obtain asymptotically Gaussian distributed estimators. Making use of this result, some kernel estimators of the conditional tail-index are introduced and a Weissman type estimator is derived, permitting to estimate extreme conditional quantiles of arbitrary large order. These results are illustrated through simulated and real datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves MIF, Gomes MI, de Haan L (2003) A new class of semi-parametric estimators of the second order parameter. Port Math 60:193–214

    MathSciNet  MATH  Google Scholar 

  • Alves MIF, de Haan L, Lin T (2003) Estimation of the parameter controlling the speed of convergence in extreme value theory. Math Methods Stat 12:155–176

    Google Scholar 

  • Beirlant J, Goegebeur Y (2003) Regression with response distributions of Pareto-type. Comput Stat Data Anal, 42:595–619

    Article  MathSciNet  MATH  Google Scholar 

  • Berlinet A, Gannoun A, Matzner-Løber E (2001) Asymptotic normality of convergent estimates of conditional quantiles. Statistics 35:139–169

    Article  MathSciNet  MATH  Google Scholar 

  • Bernard-Michel C, Douté S, Fauvel M, Gardes L, Girard S (2009) Retrieval of Mars surface physical properties from OMEGA hyperspectral images using Regularized Sliced Inverse Regression. J Geophys Res Planets 114:E06005

    Article  Google Scholar 

  • Bernard-Michel C, Gardes L, Girard S (2009) Gaussian regularized sliced inverse regression. Stat Comput 19:85–98

    Article  MathSciNet  Google Scholar 

  • Bingham NH, Goldie CM, Teugels JL (1987) Regular variation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Chavez-Demoulin V, Davison AC (2005) Generalized additive modelling of sample extremes. J R Stat Soc Ser C 54:207–222

    Article  MathSciNet  MATH  Google Scholar 

  • Collomb G (1976) Estimation non paramétrique de la régression par la méthode du noyau. PhD thesis, Université Paul Sabatier de Toulouse

  • Davison AC, Ramesh NI (2000) Local likelihood smoothing of sample extremes. J R Stat Soc, Ser B 62:191–208

    Article  MathSciNet  MATH  Google Scholar 

  • Davison AC, Smith RL (1990) Models for exceedances over high thresholds. J R Stat Soc, Ser B 52:393–442

    MathSciNet  MATH  Google Scholar 

  • Dekkers A, de Haan L (1989) On the estimation of the extreme-value index and large quantile estimation. Ann Stat 17:1795–1832

    Article  MATH  Google Scholar 

  • Einmahl JHJ (1990) The empirical distribution function as a tail estimator. Stat Neerl 44:79–82

    Article  MathSciNet  MATH  Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events. Springer, Berlin

    MATH  Google Scholar 

  • Ferraty F, Vieu P (2005) Nonparametric modelling for functional data. Springer, Berlin

    Google Scholar 

  • Gannoun, A (1990) Estimation non paramétrique de la médiane conditionnelle, médianogramme et méthode du noyau. Publ Inst Stat Univ Paris XXXXVI:11–22

    Google Scholar 

  • Gannoun A, Girard S, Guinot C, Saracco J (2002) Reference ranges based on nonparametric quantile regression. Stat Med 21:3119–3135

    Article  Google Scholar 

  • Gardes L (2002) Estimating the support of a Poisson process via the Faber-Shauder basis and extreme values. Publ Inst Stat Univ Paris XXXXVI:43–72

    MathSciNet  Google Scholar 

  • Gardes L, Girard S (2008) A moving window approach for nonparametric estimation of the conditional tail index. J Multivar Anal 99:2368–2388

    Article  MathSciNet  MATH  Google Scholar 

  • Gardes L, Girard S, Lekina A (2010) Functional nonparametric estimation of conditional extreme quantiles. J Multivar Anal 101:419–433

    Article  MathSciNet  MATH  Google Scholar 

  • Geffroy J (1964) Sur un problème d’estimation géométrique. Publ Inst Stat Univ Paris XIII:191–210

    MathSciNet  Google Scholar 

  • Gijbels I, Peng L (2000) Estimation of a support curve via order statistics. Extremes 3:251–277

    Article  MathSciNet  MATH  Google Scholar 

  • Girard S, Jacob P (2004) Extreme values and kernel estimates of point processes boundaries. ESAIM: Probab Stat 8:150–168

    Article  MathSciNet  MATH  Google Scholar 

  • Girard S, Jacob P (2008) Frontier estimation via kernel regression on high power-transformed data. J Multivar Anal 99:403–420

    Article  MathSciNet  MATH  Google Scholar 

  • Girard S, Menneteau L (2005) Central limit theorems for smoothed extreme value estimates of point processes boundaries. J Stat Plan Inference 135(2):433–460

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes MI, Martins MJ, Neves M (2000) Semi-parametric estimation of the second order parameter, asymptotic and finite sample behaviour. Extremes 3:207–229

    Article  MathSciNet  MATH  Google Scholar 

  • de Haan L, Ferreira A (2006) Extreme value theory: an introduction. Springer series in operations research and financial engineering. Springer, Berlin

    MATH  Google Scholar 

  • Hall P, Tajvidi N (2000) Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data. Stat Sci 15:153–167

    Article  MathSciNet  Google Scholar 

  • Hall P, Nussbaum M, Stern S (1997) On the estimation of a support curve of indeterminate sharpness. J Multivar Anal 62(2):204–232

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle W, Park BU, Tsybakov AB (1995) Estimation of a non sharp support boundaries. J Multivar Anal 43:205–218

    Article  Google Scholar 

  • Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3:1163–1174

    Article  MATH  Google Scholar 

  • Korostelev AP, Tsybakov AB (1993) Minimax theory of image reconstruction. Lecture notes in statistics, vol 82. Springer, New York

    Book  MATH  Google Scholar 

  • Meligkotsidou L, Vrontos I, Vrontos S (2009) Quantile regression analysis of hedge fund strategies. J Empir Finance 16:264–279

    Article  Google Scholar 

  • Menneteau L (2008) Multidimensional limit theorems for smoothed extreme value estimates of point processes boundaries. ESAIM: Probab Stat 12:273–307

    Article  MathSciNet  MATH  Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3:119–131

    Article  MathSciNet  MATH  Google Scholar 

  • Roussas GG (1969) Nonparametric estimation of the transition distribution function of a Markov process. Ann Math Stat 40:1386–1400

    Article  MathSciNet  MATH  Google Scholar 

  • Samanta T (1989) Non-parametric estimation of conditional quantiles. Stat Probab Lett 7:407–412

    Article  MathSciNet  MATH  Google Scholar 

  • Smith RL (1989) Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone (with discussion). Stat Sci 4:367–393

    Article  MATH  Google Scholar 

  • Stone CJ (1977) Consistent nonparametric regression (with discussion). Ann Stat 5:595–645

    Article  MATH  Google Scholar 

  • Stute W (1986) Conditional empirical processes. Ann Stat 14:638–647

    Article  MathSciNet  MATH  Google Scholar 

  • Weissman I (1978) Estimation of parameters and large quantiles based on the k largest observations. J Am Stat Assoc 73:812–815

    Article  MathSciNet  MATH  Google Scholar 

  • Yao Q (1999) Conditional predictive regions for stochastic processes. Technical report, University of Kent at Canterbury

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Girard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daouia, A., Gardes, L., Girard, S. et al. Kernel estimators of extreme level curves. TEST 20, 311–333 (2011). https://doi.org/10.1007/s11749-010-0196-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-010-0196-0

Keywords

Mathematics Subject Classification (2000)

Navigation