Skip to main content
Log in

How variable is delayed selfing in a fluctuating pollinator environment? A comparison between a delayed selfing and a pollinator-dependent Schizanthus species of the high Andes

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Delayed selfing has been considered the best-of-both-worlds response to pollinator unpredictability because it can provide reproductive assurance without decreasing outcrossing potential. According to this hypothesis, selfing rates in delayed selfing species should be highly variable in fluctuating pollinator environments. To test this prediction, as well to explore the consequences of delayed selfing on genetic patterns, we compared two sister species that grow in the high Andes of Chile: Schizanthus grahamii that exhibits delayed selfing and Schizanthus hookeri, which is self-compatible but requires pollinators for seed set. We estimated genetic diversity within and among five populations of each species using six shared microsatellites. Our results indicated that selfing rates in S. grahamii (range 0.07–0.81) were significantly more variable than in S. hookeri (range 0–0.26). The highest levels of selfing were found in the populations of S. grahamii located at highest altitudes (r = 0.78) and at northern margin range, where pollinators are probably more scarce. These populations also showed the lowest allelic richness and heterozygosity values. Southern populations of S. grahamii had mixed mating, and showed heterozygosity and diversity values close to those detected for S. hookeri along all the sampled range. Selfing in this species results from geitonogamy, and did not covary with altitude. Schizanthus grahamii showed greater population differentiation than S. hookeri. Overall, our results indicated that selfing rates were widely variable in S. grahamii, with some populations predominantly selfing and others showing mixed mating. This pattern may be associated with the strong fluctuations in pollinator service that typically occur in the high Andes of Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aide TM (1986) The influence of wind and animal pollination on variation in outcrossing rates. Evolution 40:434–435

    Article  Google Scholar 

  • Arroyo MTK (1973) A taximetric study of infraspecific variation in autogamous Limnanthes floccosa (Limnanthaceae). Brittonia 25:177–191

    Article  Google Scholar 

  • Arroyo MTK, Armesto JJ, Primack R (1985) Community studies in pollination ecology in the high temperate Andes of Central Chile. II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst Evol 149:187–203

    Article  Google Scholar 

  • Arroyo MTK, Muñoz S, Henríquez C, Till-Bottraud I, Pérez F (2006) Erratic pollination, high selfing levels and their correlates and consequences in an altitudinally widespread above tree-line species in the high Andes of Chile. Acta Oecol 30:248–257

    Article  Google Scholar 

  • Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Mol Biol Evol 14:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Barrett SCH (2003) Mating strategies in flowering plants: the outcrossing-selfing paradigm. Philos Trans R Soc B 358:991–1004

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2001) GENETIX 4.02 Logiciel sous. Windows TM pour la génétique des populations, Laboratoire Génome, Populations, interactions, CNRS UMR 5000. Montpellier

  • Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature 391:238–239

    Article  Google Scholar 

  • Bingham RA, Ranker TA (2000) Genetic diversity in alpine and foothill populations of Campanula rotundifolia (Campanulaceae). Int J Plant Sci 161:403–411

    Article  PubMed  Google Scholar 

  • Bliss LC (1962) Adaptations of arctic and alpine plants to environmental conditions. Arctic 15:117–144

    Google Scholar 

  • Busch JW (2005) The evolution of self-compatibility in geographically peripheral populations of Leavenworthia alabamica (Brassicaceae). Am J Bot 92:1503–1512

    Article  PubMed  Google Scholar 

  • Carlson JE (2008) Hummingbirds responses to gender-biased nectar production: are nectar biases maintained by natural or sexual selection? Proc Biol Sci 275:1717–1746

    Article  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B (1995) Quantitative genetics in plants: the effect of the breeding system on genetic variability. Evolution 49:911–920

    Article  Google Scholar 

  • Charlesworth D, Wright SI (2001) Breeding systems and genome evolution. Curr Opin Genet Dev 11:685–690

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134:1289–1303

    PubMed  CAS  Google Scholar 

  • David P, Pujol B, Viard F, Castella V, Goudet J (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16:2474–2487

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL (1998) Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics 148:423–434

    PubMed  CAS  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Fenster CB, Ritland K (1992) Chloroplast DNA and isozyme diversity in two Mimulus species (Scrophulariaceae) with contrasting mating systems. Am J Bot 79:1440–1447

    Article  CAS  Google Scholar 

  • Glémin S, Bazin E, Charlesworth D (2006) Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc Biol Sci 273:3011–3019

    Article  PubMed  Google Scholar 

  • Goodwillie C, Kalisz S, Eckert CC (2005) The evolutionary enigma of mixed mating in plants. Annu Rev Ecol Syst 36:47–79

    Article  Google Scholar 

  • Grau J, Grönbach E (1984) Untersuchungen zur variabilität in der gattung Schizanthus (Solanaceae). Mitteilungen der Botanischen Staatssammlung München 20:111–203

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effect of life history traits on genetic diversity in plant species. Philos Trans R Soc B 351:1291–1298

    Article  Google Scholar 

  • Hodgins KA, Barrett SC (2006) Mating patterns and demography in the tristylous daffodil Narcissus triandrus. Heredity 96:262–270

    Article  PubMed  CAS  Google Scholar 

  • Holsinger KE (1988) Inbreeding depression doesn’t matter: the genetic basis of mating system evolution. Evolution 42:1235–1244

    Article  Google Scholar 

  • Igic B, Kohn JR (2006) The distribution of plant mating systems: study bias against obligately outcrossing species. Evolution 60:1098–1103

    PubMed  Google Scholar 

  • Ingvarsson PK (2002) A metapopulation perspective on genetic diversity and differentiation in partially self-fertilizing plants. Evolution 56:2368–2373

    PubMed  Google Scholar 

  • Iwasa Y (1990) Evolution of the selfing rate and resource allocation models. Plant Species Biol 5:19–30

    Article  Google Scholar 

  • Jarne P, Auld JR (2006) Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60:1816–1824

    PubMed  Google Scholar 

  • Jarne P, David P (2008) Quantifying inbreeding in natural populations of hermaphroditic organisms. Heredity 100:431–439

    Article  PubMed  CAS  Google Scholar 

  • Kalisz S, Vogler DW (2003) Benefits of autonomous selfing under unpredictable pollinator environments. Ecology 84:2928–2942

    Article  Google Scholar 

  • Kalisz S, Vogler DW, Hanley KM (2004) Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature 430:884–887

    Article  PubMed  CAS  Google Scholar 

  • Kropf M, Renner SS (2008) Pollinator-mediated selfing in two deceptive orchids and a review of pollinium tracking studies addressing geitonogamy. Oecologia 155:497–508

    Article  PubMed  Google Scholar 

  • Lande R, Schemske DW (1985) The evolution of self-fertilization and inbreeding depression in plants I genetic models. Evolution 39:24–40

    Article  Google Scholar 

  • Liu F, Zhang L, Charlesworth D (1998) Genetic diversity in Leavenworthia populations with different inbreeding levels. Proc Biol Sci 265:293–301

    Article  PubMed  CAS  Google Scholar 

  • Lloyd DG (1979) Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat 113:67–79

    Article  Google Scholar 

  • Lloyd DG (1992) Self- and cross-fertilization in plants II. The selection of self-fertilization. Int J Plant Sci 153:370–380

    Article  Google Scholar 

  • Maad J, Reinhammar LG (2004) Incidence of geitonogamy differs between two populations in the hawkmoth-pollinated Platanthera bifolia (Orchidaceae). Can J Bot 82:1586–1593

    Article  Google Scholar 

  • Mable BK, Adam K (2007) Patterns of genetic diversity in outcrossing and selfing populations of Arabidopsis lyrata. Mol Ecol 16:3565–3580

    Article  PubMed  CAS  Google Scholar 

  • Mimura M, Aitken SN (2007) Increased selfing and decreased effective pollen donor number in peripheral relative to central populations in Picea sitchensis (Pinaceae). Am J Bot 94:991–998

    Article  PubMed  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pérez F (2011) Discordant patterns of morphological and genetic divergence in the closely related species Schizanthus hookeri and S grahamii (Solanaceae). Plant Syst Evol 293:197–205

    Article  Google Scholar 

  • Pérez F, Arroyo MTK, Medel R, Hershkovitz M (2006) Ancestral reconstruction of flower morphology and pollination systems in Schizanthus. Am J Bot 93:1029–1038

    Article  PubMed  Google Scholar 

  • Pérez F, Arroyo MTK, Medel R (2009) Evolution of autonomous selfing accompanies increased specialization in the pollination system of Schizanthus (Solanaceae). Am J Bot 96:1168–1176

    Article  PubMed  Google Scholar 

  • Pérez F, Spencer P, Cienfuegos A, Suárez L (2011) Microsatellite markers for the high Andean species Schizanthus hookeri and S grahamii (Solanaceae). Am J Bot 98:e114–e118

    Article  PubMed  Google Scholar 

  • Porcher E, Lande R (2005) Reproductive compensation in the evolution of plant mating systems. New Phytol 166:673–684

    Article  PubMed  Google Scholar 

  • Rahel L, Graf R, Gugerli F, Landergott U, Holderegger R (2010) Lower selfing rate at higher altitudes in the alpine plant Eritrichium nanum (Boraginaceae). Am J Bot 97:899–901

    Article  Google Scholar 

  • Ritland K (1984) The effective proportion of self-fertilization with consanguineous matings in inbred populations. Genetics 106:139–152

    PubMed  CAS  Google Scholar 

  • Sakai S (1995) Evolutionarily stable selfing rates of hermaphroditic plants in competing and delayed selfing modes with allocation to attractive structures. Evolution 49:557–564

    Article  Google Scholar 

  • Schoen DJ, Brown AH (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. PNAS 88:4494–4497

    Article  PubMed  CAS  Google Scholar 

  • Schoen DJ, Lloyd DG (1992) Self- and cross-fertilization in plants III methods for studying modes and functional aspects of self fertilization. Int J Plant Sci 153:381–393

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W H Freeman and Co, USA

    Google Scholar 

  • Sweigart AL, Mason A, Willis JH (2007) Natural variation for a hybrid incompatibility between two species of Mimulus. Evolution 61:141–151

    Article  PubMed  Google Scholar 

  • Utelli A, Roy BA (2008) Pollinator abundance and behavior on Acontinum lycoctonum (Ranunculaceae): an analysis of the quantity and quality components of pollinatin. Oikos 89:461–470

    Article  Google Scholar 

  • Uyenoyama MK, Holsinger KE, Waller DM (1993) Ecological and genetic factors directing the evolution of self-fertilization. Oxf Surv Evol Biol 9:327–381

    Google Scholar 

  • Vaughton G, Ramsey M (2010) Pollinator-mediated selfing erodes the flexibility of the best-of-both-worlds mating strategy in Bulbine vagans. Funct Ecol 24:374–382

    Article  Google Scholar 

  • Vogler DW, Kalisz S (2001) Sex among the flowers: the distribution of plant mating systems. Evolution 55:202–28705

    PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Williams CF, Ruvinsky J, Scott PE, Hews DK (2001) Pollination, breeding system, and genetic structure in two sympatric Delphinium (Ranunculaceae) species. Am J Bot 88:1623–1633

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations. The University of Chicago Press, USA

    Google Scholar 

  • Yan J, Chu HJ, Wang HC, Li JQ, Sang T (2009) Population genetic structure of two Medicago species shaped by distinct life form, mating system and seed dispersal. Ann Bot 103:825–834

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support of FONDECYT 11085018 and Millennium Scientific Initiative (Mideplan, Chile) P05-002-F-ICM and Programa de Financiamiento Basal de Conicyt (PFB-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Pérez.

Appendix

Appendix

See Table 4.

Table 4 Locations and voucher specimens of studied populations of Schizanthus hookeri and S. grahamii

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, F., León, C. & Muñoz, T. How variable is delayed selfing in a fluctuating pollinator environment? A comparison between a delayed selfing and a pollinator-dependent Schizanthus species of the high Andes. Evol Ecol 27, 911–922 (2013). https://doi.org/10.1007/s10682-012-9612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-012-9612-0

Keywords

Navigation