Skip to main content

Advertisement

Log in

Identification of new resistance source for Sclerotinia stem rot in backcross population of B. juncea + S. alba allohexaploids: key to manage disease through host resistance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Sclerotinia sclerotiorum, which causes Sclerotinia stem rot, poses a significant threat to the global production of mustard and rapeseed crops. Cultivated Brassica germplasm does not contain a source of resistance to S. sclerotiorum. Rapeseed and mustard have been utilized to introduce the S. sclerotiorum resistance, nevertheless, using wild Brassicaceae members. In the current work, we developed a backcross population from four stable somatic hybrids of Sinapis alba and B. juncea to identify fertile lines that are resistant to stem rot disease. Each backcross line had extremely high male and female fertility and had successfully backcrossed with a B. juncea parent. In two different locations, a collection of 411 lines, including somatic hybrids, BC1F2-3, and BC2F1-2 lines, as well as tolerant and susceptible checks, were tested using two different virulent strains of the pathogen. The study's findings demonstrated that somatic hybrids and the BC1F2-3 lines were resistant to stem rot, whereas the BC2F1-2 lines displayed varied expressions of resistance to the disease, ranging from immune to highly susceptible. While the B. carinata remained tolerant in our investigation, the susceptible parent and checks were rated as highly susceptible. In addition, the in-vitro cotyledon assay for stem rot demonstrated that hybrids and the BC1F4 generation consistently responded with a resistance response, however, the BC2F3 generation responded differently, as it would under actual field conditions. It was discovered that the stem cortex and pith thickness are significant factors connected to the resistance response. To the best of our knowledge, this is the first report to identify immune and highly resistant B. juncea backcross lines with an alien genome in such a large number that they could easily hybridize with other B. juncea germplasms and use in resistance breeding programs for the Sclerotinia stem rot disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atri C, Akhatar J, Gupta M et al (2019) Molecular and genetic analysis of defensive responses of Brassica juncea – B. fruticulosa introgression lines to Sclerotinia infection. Sci Rep 9:1708

    Article  Google Scholar 

  • Barbetti MJ, Li CX, Garg H, Li H, Banga SK, Banga SS, Sandhu PS, Singh R, Singh D, Liu SY, Gurung AM, Salisbury PA (2011) Host resistance in oilseed brassicas against Sclerotinia—Renewed hope for managing a recalcitrant pathogen. In: “Proceedings of the 13th international rapeseed congress”. 2011, Prague, Czech Republic. GCIRC, Paris, France, pp 713–715

  • Baswana KS, Rastogi KB, Sharma PP (1991) Inheritance of stalk rot resistance in cauliflower (Brassica oleracea var. botrytis L.). Euphytica 57:93–96

    Article  Google Scholar 

  • Boland GJ, Hall R (1994) Index of plant hosts for Sclerotinia sclerotiorum. Can J Pathol 16:93–108

    Article  Google Scholar 

  • Bradley CA, Henson RA, Porter PM, LeGare DG, del Rio LE, Khot SD (2006) Response of canola cultivars to Sclerotinia sclerotiorum in controlled and field environment. Plant Dis 90:215–219. https://doi.org/10.1094/PD-90-0215

    Article  CAS  PubMed  Google Scholar 

  • Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231

    Article  CAS  Google Scholar 

  • Brown J, McCaffrey JP, Brown DA, Harmon DA, Harmon BL, Davis JB (2004) Yield reduction in Brassica napus, B. rapa, B. juncea, and Sinapis alba caused by flea beetle (Phyllotreta cruciferae Goeze) (Coleoptera: Chrysomelidae) infestation in northern Idaho. J Econ Entomol 97:1642–1647

    Article  PubMed  Google Scholar 

  • Buchwaldt L, Li R, Hegedus DD, Rimmer SR (2005) Pathogenesis of Sclerotinia sclerotiorum in relation to screening for resistance. In: ‘Proceedings of the 13th international sclerotinia workshop’. Monterey, CA, USA. International Sclerotinia Working Group, pp 22

  • Chandler J, Corbesier L, Spielmann P, Dettendorfer J, Stahl D, Apel K, Melzer S (2005) Modulating flowering time and prevention of pod shatter in oilseed rape. Mol Breed 15:87–94

    Article  Google Scholar 

  • Chandra A, Gupta ML, Ahuja I, Kaur G, Banga SS (2004) Intergeneric hybridization between Erucastrum cardaminoides and two diploid crop Brassica species. Theor Appl Genet 108:1620–1626. https://doi.org/10.1007/s00122-004-1592-1

    Article  CAS  PubMed  Google Scholar 

  • Chen HF, Wang H, Li ZY (2007) Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa- pastoris. Plant Cell Rep 26:1791–1800

    Article  CAS  PubMed  Google Scholar 

  • Clarkson JP, Staveley J, Phelps K, Young CS, Whipps JM (2003) Ascospore release and survival in Sclerotinia sclerotiorum. Mycol Res 107:213–222

    Article  PubMed  Google Scholar 

  • Cruickshank AW, Cooper M, Ryley MJ (2002) Peanut resistance to Sclerotinia minor and S. sclerotiorum. Australian J Agric Res 53(10):1105–1110

    Article  Google Scholar 

  • Delourme R, Barbetti MJ, Snowdon R, Zhao J, Manzanares-Dauleux MJ (2011) Genetics and genomics of disease resistance. Science Publishers, CRC Press, USA

    Google Scholar 

  • Denton-Giles M, Derbyshire MC, Khentry Y, Buchwaldt L, Kamphuis LG (2018) Partial stem resistance in Brassica napus to highly aggressive and genetically diverse Sclerotinia sclerotiorum isolates from Australia. Canadian J Pl Pathol 40(4):551–561

    Article  CAS  Google Scholar 

  • Disi JO, Mei J, Wei D, Ding Y, Qian W (2014) Inheritance of leaf and stem resistance to Sclerotinia sclerotiorum in a cross between Brassica incana and Brassica oleracea var. alboglabra. J Agric Sci 152:146–152

    Article  Google Scholar 

  • Downey RK, Stringham GR, McGregor DI, Steffanson S (1975) Breeding rapeseed and mustard crops. In: Harapiak JT (ed) Oilseed and Pulse Crops in Western Canada. Western Cooperative Fertilize Ltd., Calgary, Alberta, Canada, pp 157–183

    Google Scholar 

  • Gaetán S, Madia M (2005) Occurrence of Stem Rot on Canola Caused by Sclerotinia sclerotiorum in Argentina. Plant Dis 89(5):530. https://doi.org/10.1094/PD-89-0530B

    Article  PubMed  Google Scholar 

  • Garg H, Sivasithamparam K, Banga SS, Barbetti MJ (2008) Cotyledon assay as a rapid and reliable method of screening for resistance against Sclerotinia sclerotiorum in Brassica napus genotypes. Australas Plant Pathol 37:106–111. https://doi.org/10.1071/AP08002

    Article  Google Scholar 

  • Garg H, Atri C, Sandhu PS, Kaur B, Renton M, Banga SK, Singh H, Singh C, Barbetti MJ, Banga SK (2010) High level of resistance to Sclerotinia sclerotiorum in introgression lines derived from hybridization between wild crucifers and the crop Brassica species B. napus and B. juncea. Field Crop Res 117:51–58

    Article  Google Scholar 

  • Ge X, Li Y, Wan Z, You MP, Finnegan PM, Banga SS et al (2012) Delineation of Sclerotinia sclerotiorum pathotypes using differential resistance responses on Brassica napus and B. juncea genotypes enables identification of resistance to prevailing pathotypes. Field Crops Res 127:248–258. https://doi.org/10.1016/j.fcr.2011.11.022

    Article  Google Scholar 

  • Ghasolia RP, Shivpuri A, Bhargava AK (2004) Sclerotinia rot of Indian mustard in Rajasthan. Indian Phytopath 57(1):76–79

    Google Scholar 

  • Gilmore B, Myers JR, Kean D (2002) Completion of testing of Phaseolus coccineus plant introductions (pis) for white mold, Sclerotinia sclerotiorum resistance. https://naldc.nal.usda.gov/download/IND23299654/PDF

  • Godoy M, Castaño F, Ré J et al (2005) Sclerotinia resistance in sunflower: I. Genotypic variations of hybrids in three environments of Argentina. Euphytica 145:147–154. https://doi.org/10.1007/s10681-005-0627-2

    Article  CAS  Google Scholar 

  • Gupta NC, Sharma P, Rao M, Rai PK, Gupta AK (2020) Evaluation of non-injury inoculation technique for assessing Sclerotinia stem rot (Sclerotinia sclerotiorum) in oilseed Brassica. J Microbiol Methods 175:105983. https://doi.org/10.1016/j.mimet.2020.105983

    Article  CAS  PubMed  Google Scholar 

  • Gyawali S, Harrington M, Durkin J, Horner K, Parkin IAP, Hegedus DD et al (2016) Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Mol Breed 36:72. https://doi.org/10.1007/s11032-016-0496-5

    Article  CAS  PubMed  Google Scholar 

  • Hansen LN, Earle ED (1997) Somatic hybrids between Brassica oleracea and Sinapis alba L. with resistance to Alternaria brassicae (Berk.) Sacc. Theor Appl Genet 94:1078–1085

    Article  Google Scholar 

  • Hartman GL, Gardner ME, Hymowitz T, Naidoo GC (2000) Evaluation of perennial glycine species for resistance to soybean fungal pathogens that cause sclerotinia stem rot and sudden death syndrome. Crop Sci 40:545–549

    Article  Google Scholar 

  • Hind TL, Ash GJ, Murray GM (2003) Prevalence of sclerotinia stem rot of canola in New South Wales. Australian J Exp Agri 43:163–168. https://doi.org/10.1071/EA02027

    Article  Google Scholar 

  • Koch S, Dunker S, Kleinhenz B, Rohrig M, Tiedemann A (2007) A crop loss-related forecasting model for Sclerotinia stem rot in winter oilseed rape. Phytopathology 97:1186–1194

    Article  CAS  PubMed  Google Scholar 

  • Kolte SJ (1985) Diseases of annual edible oilseed crops, vol-II rapeseed-mustard and sesame diseases. CRC Press, Boca Raton, FL, p 135p

    Google Scholar 

  • Kumari P, Bhat SR (2019) Allohexaploid H2 (IC0626000; INGR18031), an Indian mustard (Brassica juncea) germplasms with heat tolerance, resistant to Alternaria brassicae. Indian J Plant Genet Res 32:439

    Google Scholar 

  • Kumari P, Bhat SR (2021) Allohexaploid (H1) (IC0628060; INGR19102), an Allohexaploid (Brassica juncea + Sinapis alba) germplasm resistant to Alternaria brassicae and Sclerotinia sclerotiorum tolerant. Indian J of Plant Genet Res 34(1):160–161

    Google Scholar 

  • Kumari P, Singh KP (2019) Characterization of stable somatic hybrids of Sinapis alba and Brassica juncea for Alternaria blight, Sclerotinia sclerotiorum resistance and heat tolerance. Indian Res J Ext Edu 19(2&3):99–103

    Google Scholar 

  • Kumari P, Bisht DS, Bhat SR (2018) Stable, fertile somatic hybrids between Sinapis alba and Brassica juncea show resistance to Alternaria brassicae and heat stress. Plant Cell Tiss Organ Cult 133:77–86. https://doi.org/10.1007/s11240-017-1362-9

    Article  Google Scholar 

  • Kumari P, Singh KP, Rai PK (2020a) Draft genome of multiple resistance donor plant Sinapis alba: an insight into SSRs, annotations and phylogenetics. PLoS ONE 15:e0231002. https://doi.org/10.1371/journal.pone.0231002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari P, Singh KP, Bisht D, Kumar S (2020b) Somatic hybrids of Sinapis alba and Brassica juncea: study of backcross progenies for morphological variation, chromosome constitution and reaction to Alternaria brassicae. Euphytica 216:93. https://doi.org/10.1007/s10681-020-02629-3

    Article  CAS  Google Scholar 

  • Kumari P, Singh KP, Kumar S, Yadava DK (2020c) Development of a yellow-seeded stable allohexaploid Brassica through inter-generic somatic hybridization with a high degree of fertility and resistance to Sclerotinia sclerotiorum. Front Plant Sci 11:575591. https://doi.org/10.3389/fpls.2020c.575591

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamb RJ (1984) Effects of flea beetle Phyllotreta spp. (Coleoptera: Chrysomelidae) on survival, growth, seed yield and quality of canola, rape and yellow mustard. Can Entomol 116:269–280

    Article  Google Scholar 

  • Lamey HA (1995) Survey of blackleg and Sclerotinia stem rot of canola in North Dakota in 1991 and 1993. Plant Dis 79:322–324

    Google Scholar 

  • Lelivelt CLC, Hoogendoorn J (1993) The development of juveniles of Heterodera schachtii in roots of resistant and susceptible genotypes of Sinapis alba, Brassica napus, Raphanus sativus and hybrids. Neth J Plant Pathol 99:13–22. https://doi.org/10.1007/BF01974781

    Article  Google Scholar 

  • Li CX, Li H, Sivasithamparam K, Fu TD, Li YC, Liu SY, Barbetti MJ (2006) Expression of field resistance under Western Australian conditions to Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm and its relation with stem diameter. Aust J Agric Res 57:1131–1135. https://doi.org/10.1071/AR06066

    Article  Google Scholar 

  • Li CX, Li H, Siddique AB, Sivasithamparam K, Salisbury P, Banga SS, Banga S, Chattopadhyay C, Kumar A et al (2007) The importance of the type and time of inoculation and assessment in the determination of resistance in Brassica napus and B. juncea to Sclerotinia sclerotiorum. Aust J Agric Res 58:1198–1203

    Article  Google Scholar 

  • Li CX, Liu SY, Sivasithamparam K, Barbetti MJ (2008) New Sources of resistance to Sclerotinia stem rot caused by Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm screened under western Australian conditions. Australas Plant Pathol 38:149–152

    Article  Google Scholar 

  • Li AM, Wei CX, Jiang JJ, Zhang YT, Snowdon RJ, Wang Y (2009a) Phenotypic variation in the progeny of somatic hybrids between Brassica napus and Sinapis alba. Euphytica 170:289–296

    Article  CAS  Google Scholar 

  • Li CX, Liu SY, Sivasithamparam K, Barbetti MJ (2009b) New sources of resistance to Sclerotinia stem rot caused by Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm screened under Western Australian conditions. Australas Plant Pathol 38:149–152

    Article  Google Scholar 

  • Li J, Zhang C, Guan C, Luo L, Ren L, Wei W, Lu G, Fang X (2017) Analysis of intergeneric sexual hybridization between transgenic Brassica oleracea and Sinapis alba. Euphytica 213:271. https://doi.org/10.1007/s1068-17-2063-5

    Article  Google Scholar 

  • Li YC, Chen J, Bennett R, Kiddle G, Wallsgrove R, Huang YJ, He YH (1999) Breeding, inheritance, and biochemical studies on Brassica napuscv. Zhougyou 821: tolerance to Sclerotinia sclerotiorum (stem rot). In ‘Proceedings of the 10th International Rapeseed Congress, Canberra, Australia’. (Eds N Wratten, PA Salisbury) p. 61. (The Regional Institute: Gosford, NSW)

  • Link V, Johnson K (2007) White mold. Plant Health Instruct. https://doi.org/10.1094/PHI-I-2007-0809-01

    Article  Google Scholar 

  • Malvárez M, Carbone I, Grünwald NJ, Subbarao KV, Schafer M, Kohn LM (2007) New populations of Sclerotinia sclerotiorum from lettuce in California and peas and lentils in Washington. Phytopathology 97:470–483

    Article  PubMed  Google Scholar 

  • McCartney HA, Lacey ME, Li Q, Heran A (1999) Airborne ascospore concentration and the infection of oilseed rape and sunflowers by Sclerotinia sclerotiorum. http://www.regional.org.au/au/gcirc/3/430.htm

  • McDonald MR, Boland GJ (2004) Forecasting diseases caused by Sclerotinia spp. in eastern Canada: fact or fiction? Can J Plant Pathol 26:480–488. https://doi.org/10.1080/07060660409507168

    Article  Google Scholar 

  • Mei J, Qian L, Disi JO, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W (2011) Identification of resistant sources against Sclerotinia sclerotiorum in Brassica crops with emphasis on B. oleracea. Euphytica 177:393–400

    Article  Google Scholar 

  • Mei J, Ding Y, Lu K et al (2013) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet 126:549–556. https://doi.org/10.1007/s00122-012-2000-x

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Liu Y, Wei D, Wittkop B, Ding Y, Li Q, Li J, Wan H, Li Z, Ge X, Frauen M, Snowdon RJ, Qian W, Friedt W (2015) Transfer of Sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theor Appl Genet 128:639–644

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Chaoguo S, Yang R, Feng Y, Gao Y, Ding Y, Li J, Qian W (2020) Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theor Appl Genet 133:1313–1319. https://doi.org/10.1007/s00122-020-03552-w

    Article  CAS  PubMed  Google Scholar 

  • Morrall RAA, Dueck J (1982) Epidemiology of Sclerotinia stem rot of rapeseed in Saskatchewan. Canadian Pl Pathol 4:161–168

    Article  Google Scholar 

  • Navabi ZK, Strelkov SE, Good AG, Thiagarajah MR, Rahman MH (2010) Brassica B-genome resistance to stem rot (Sclerotinia sclerotiorum) in a doubled haploid population of Brassica napus × Brassica carinata. Canadian J Plant Patho 32:237–242

    Article  CAS  Google Scholar 

  • Peltier AJ, Bradley CA, Chilvers MI, Malvick DK, Mueller DS, Wise KA, Esker PD (2012) Biology, yield loss and control of Sclerotinia stem rot of soybean. J Integ Pest Mngmt 3(2):1–7. https://doi.org/10.1603/IPM11033

    Article  Google Scholar 

  • Porter L, Hoheisel G, Coffman VA (2009) Resistance of peas to Sclerotinia sclerotiorum in the Pisum core collection. Plant Pathol. https://doi.org/10.1111/j.1365-3059.2008.01937.x

    Article  Google Scholar 

  • Primard C, Vedel F, Mathieu C, Pelletier G, Chevre AM (1988) Interspecific somatic hybridization between Brassica napus and Brassica hirta (Sinapis alba L.). Theor Appl Genet 75:546–552

    Article  CAS  Google Scholar 

  • Rana K, Atri C, Gupta M, Akhatar J, Prabhjodh SS, Kumar N, Jaswal R, Barbetti MJ, Banga SS (2017) Mapping resistance responses to Sclerotinia infestation in introgression lines of Brassica juncea carrying genomic segments from wild Brassicaceae B. fruticulosa. Sci Rep 7:5904. https://doi.org/10.1038/s41598-017-05992-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana K, Atri C, Akhatar J, Kaur R, Goyal A, Singh MP, Kumar N, Sharma A, Sandhu PS, Kaur G, Barbetti MJ, Banga SS (2019) Detection of first marker-trait associations for resistance against Sclerotinia sclerotiorum in Brassica junceaErucastrum cardaminoides introgression lines. Front Plant Sci 10:1015. https://doi.org/10.3389/fpls.2019.01015

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla AK (2005) Estimation of yield losses to Indian mustard (Brassica juncea) due to Sclerotinia stem rot. J Phytol Res 18:267–268

    Google Scholar 

  • Singh R, Singh D, Barbetti MJ, Singh H, Caixia L, Sivasithamparam K, Salisbury P, Burton W, Tingdong F (2008) Sclerotinia rot tolerance in oilseed Brassica. J Oilseeds Res 25:223–225

    Google Scholar 

  • Singh KP, Kumari P, Rai PK (2021a) Current status of the disease-resistant gene(s)/QTLs, and strategies for improvement in Brassica juncea. Front Plant Sci 12:617405. https://doi.org/10.3389/fpls.2021.617405

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh KP, Kumari P, Yadava DK (2021b) Introgression and QTL mapping conferring resistance for Alternaria brassicae in the backcross progeny of Sinapis alba + Brassica juncea somatic hybrids. Plant Cell Rep. https://doi.org/10.1007/s00299-021-02785-3

    Article  PubMed  Google Scholar 

  • Singh KP, Kumari P, Raipuria RK, Rai PK (2022) Development of genome-specific SSR markers for the identification of introgressed segments of Sinapis alba in the Brassica juncea background. 3Biotech 12:332. https://doi.org/10.1007/s13205-022-03402-0

    Article  Google Scholar 

  • Singh KP, Kumari P, Rai PK (2023) Phenotypic characterization and resistance response to Sclerotinia sclerotiorum of backcross lines developed from stable allohexaploids of Sinapis alba + Brassica juncea. Euphytica 219:34. https://doi.org/10.1007/s10681-023-03160-x

    Article  CAS  Google Scholar 

  • Sprague SJ, Stewart-Wade S (2002) Sclerotinia in canola - results from petal and disease surveys across Victoria in 2001. In: Grains research and development corporation research update - southern region, Australia. Grains Research and Development Corporation, Victoria, p. 78

  • Taylor ID, Conway S, Roberts SJ, Astley D, Vicente IG (2002) Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:105–111. https://doi.org/10.1094/PHYTO.2002.92.1.105

    Article  CAS  PubMed  Google Scholar 

  • Taylor A, Coventry E, Jones JE, Clarkson JP (2015) Resistance to a highly aggressive isolate of Sclerotinia sclerotiorum in a Brassica napus diversity set. Plant Pathol 64:932–940. https://doi.org/10.1111/ppa.12327

    Article  Google Scholar 

  • Taylor A, Rana K, Handy C, Clarkson JP (2018) Resistance to Sclerotinia sclerotiorum in wild Brassica species and the importance of Sclerotinia subarctica as a Brassica pathogen. Plant Pathol 67(2):433–444

    Article  CAS  Google Scholar 

  • Thatcher LF, Myers CA, Pain N, O’Sullivan CA, Roper MM (2017) A Sclerotinia disease assay for screening flowering canola plants in controlled environments. Aust Plant Pathol 46:333–338

    Article  CAS  Google Scholar 

  • Tziros GT, Bardas GA, Tsialtas JT, Karaoglanidis GS (2008) First report of oilseed rape stem rot caused by Sclerotinia sclerotiorum in Greece. Plant Dis 92(10):1473. https://doi.org/10.1094/PDIS-92-10-1473C

    Article  CAS  PubMed  Google Scholar 

  • Uloth M, You MP, Finnegan PM, Banga SS, Banga SK, Yi H et al (2013) New sources of resistance to Sclerotinia sclerotiorum for crucifer crops. Field Crops Res 154:40–52. https://doi.org/10.1016/j.fcr.2013.07.013

    Article  Google Scholar 

  • Uloth MB, Clode PL, You MP, Barbetti MJ (2016) Attack modes and defense reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea, and B. napus. Ann Bot 117:79–95

    Article  PubMed  Google Scholar 

  • Wang R, Ripley VL, Rakow G (2007) Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breed 126:588–595

    Article  Google Scholar 

  • Wei D, Mei J, Fu Y et al (2014) Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed 34:1797–1804. https://doi.org/10.1007/s11032-014-0139-7

    Article  CAS  Google Scholar 

  • Westman AL, Kresovich S, Dickson MH (1999) Regional variation in Brassica nigra and other weedy crucifers for disease reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris. Euphytica 106:253–259. https://doi.org/10.1023/A:1003544025146

    Article  Google Scholar 

  • Wu J, Cai G, Tu J, Li L, Liu S, Luo X et al (2013) Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS ONE 8:e67740. https://doi.org/10.1371/journal.pone.0067740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhao Q, Liu S, Shahid M, Lan L, Cai GQ, Zhang CY, Fan CC, Wang YP, Zhou YM (2016) Genome-wide association study identifies new loci for resistance to Sclerotinia stem rot in Brassica napus. Front Plant Sci 7:1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Chen P, Zhao Q, Cai G, Hu Y, Xiang Y, Yang Q, Wang Y, Zhou Y (2019) Co-location of QTL for Sclerotinia stem rot resistance and flowering time in Brassica napus. Crop J 7:227–237. https://doi.org/10.1016/j.cj.2018.12.007

    Article  Google Scholar 

  • Yin X, Yi B, Chen W, Zhang W, Tu J, Fernando W, Fu T (2010) Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173:25–35

    Article  CAS  Google Scholar 

  • You MP, Uloth MB, Xi X, Banga SS, Banga SK, Barbetti MJ (2016) Valuable new resistances ensure improved management of Sclerotinia stem rot (Sclerotinia sclerotiorum) in horticultural and oilseed Brassica species. J Phytopathol 164:291–299. https://doi.org/10.1111/jph.12456

    Article  CAS  Google Scholar 

  • Young HM, Srivastava P, Paret ML, Dankers H, Wright DL, Marois JJ, Dufault NS (2012) First report of Sclerotinia stem rot caused by Sclerotinia sclerotiorum on Brassica carinata in Florida. Plant Dis 96(10):1581. https://doi.org/10.1094/PDIS-06-12-0525-PDN

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Meng J (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106:759–764

    Article  PubMed  Google Scholar 

  • Zhao Y, Wang ML (2004) Inheritance and agronomic performance of an apetalous flower mutant in Brassica napus L. Euphytica 137:381–386

    Article  Google Scholar 

  • Zhao J, Peltier AJ, Meng J, Osborn TC, Grau CR (2004) Evaluation of Sclerotinia stem rot resistance in oilseed Brassica napus using a petiole inoculation technique under greenhouse conditions. Plant Dis 88:1033–1039. https://doi.org/10.1094/PDIS.2004.88.9.1033

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Udall JA, Quijada PA, Grau CR, Meng J, Osborn TC (2006) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516. https://doi.org/10.1007/s00122-005-0154-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

1. Preetesh Kumari: (File No. YSS/2015/001849), Science and Engineering Research Board, Ministry of Science & Technology, New Delhi, India for funding the research work; (File No. SR/WOS-A/LS-373/2018), Department of Science and Technology, Ministry of Science and Technology, New Delhi, Govt. of India, India for fellowship; 2. Kaushal Pratap Singh, received Research Associateship (File No. 09/1247(0001)/2019-EMR-I) from HRDG-Council of Scientific and Industrial Research, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

PK: Funding acquisition for somatic hybrids and introgression lines development, genotyping, Editing, and finalized manuscript; KPS: Conceptualization, Methodology, in-vivo and in-vitro screening for Sclerotinia stem rot, data recording and analysis, Draft manuscript; PKR: Resources, Supervision, Manuscript editing, and finalization.

Corresponding author

Correspondence to Kaushal Pratap Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 784 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Singh, K.P. & Rai, P.K. Identification of new resistance source for Sclerotinia stem rot in backcross population of B. juncea + S. alba allohexaploids: key to manage disease through host resistance. Euphytica 219, 76 (2023). https://doi.org/10.1007/s10681-023-03208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-023-03208-y

Keywords

Navigation