Skip to main content
Log in

Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Capsella bursa-pastoris (L.) Medic (2= 4x = 32) is a natural double-low (erucic acid < 1%, glucosinolates < 30 μmol/g) germplasm and shows high degree of resistance to Sclerotinia sclerotiorum. Hybridizations were carried out between two Brassica species viz. B. rapa (2= 20) and B. napus (2= 38) as female and C. bursa-pastoris as male parent to introduce these desirable traits into cultivated Brassica species. Majority of F1 plants resembled female parents in morphology and only a few expressed some characters of male parent, including the white petals. Based on cytological observation of somatic cells, the F1 plants were classified into five types: two types from the cross with B. rapa, type I had 2= 27–29; type II had 2= 20; three types from the crosses with B. napus, type III was haploids with 2= 19; type IV had 2= 29; type V had 2= 38. One to two chromosomes of C. bursa-pastoris were detected in pollen mother cells (PMCs) of type I plant by genomic in situ hybridization (GISH), together with chromosomal segments in ovary cells and PMCs of some F1 plants. Amplified fragment length polymorphism (AFLP) bands specific for the male parent, novel for two parents and absent bands in Brassica parents were generated in majority of F1 plants, even in Brassica-types and haploids, indicating the introgressions at various levels from C. bursa-pastoris and genomic alterations following hybridization. Some Brassica-type progeny plants had reduced contents of erucic acid and glucosinolates associated with improved resistance to S. sclerotiorum. The cytological and molecular mechanisms behind these results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acarkan A, Rossberg M, Koch M, Schmidt R (2002) Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis thaliana and Capsella rubella. Plant J 23:55–62

    Article  Google Scholar 

  • Amante-Bordeos A, Sitch LA, Nelson R, Dalmacio RD, Oliva NP, Aswidinnoor H, Leung H (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Genet 84:345–354

    Article  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci USA 94:3442–3447

    Article  PubMed  Google Scholar 

  • Cheng BF, Heneen WK, Chen BY (1994) Meiotic studies on a Brassica campestris-alboglabra monosomic addition line and derived B. campestris primary trisomics. Genome 37:584–589

    PubMed  CAS  Google Scholar 

  • Cheng BF, Seguin-Swartz G, Somers DJ (2002) Cytogenetic and molecular characterization of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Genome 45:110–115

    Article  PubMed  CAS  Google Scholar 

  • Conn KL, Tewari JP, Dahiya JS (1988) Resistance to Alternaria brassicae and phytoalexin-elicitation in rapeseed and other crucifers. Plant Sci 56:21–25

    Article  CAS  Google Scholar 

  • Daun JK, DeClercq DR (1988) Quality of yellow and dark seeds in Brassica campestris canola varieties Candle and Tobin. J Am Oil Chem Soc 65:122–126

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Faure N, Serieys H, Berville A, Cazaux E, Kaan F (2002) Occurrence of partial hybrids in wide crosses between sunflower(Helianthus annuus) and perennial species H. mollis and H. orgyalis. Theor Appl Genet 104:652–660

    Article  PubMed  CAS  Google Scholar 

  • Hua YW, Li ZY (2006) Genomic in situ hybridization analysis of Brassica napus × Orychophragmus violaceus hybrids and production of B. napus aneuploids. Plant Breed 125:144–149

    Article  CAS  Google Scholar 

  • Hua YW, Liu M, Li ZY (2006) Parental genome separation and elimination of cells and chromosomes revealed by GISH and AFLP analyses in a Brassica carinata × Orychophragmus violaceus cross. Ann Bot 97:993–998

    Article  PubMed  Google Scholar 

  • Koch MA, Kiefer M (2005) Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species-Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana. Am J Bot 92:761–767

    Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    PubMed  CAS  Google Scholar 

  • Lashermes P, Andrzejewski S, Bertrand B, Combes MC, Dussert S, Graziosi G, Trouslot P, Anthony F (2000) Molecular analysis of introgressive breeding in coffee ( Coffea arabica L.). Theor Appl Genet 100:139–146

    Article  CAS  Google Scholar 

  • Leitch AR, Schwarzacher T, Jackson D, Leitch IJ (1994) Microscopy handbook. In situ hybridization: a practical guide. Bios Scientific, Oxford, pp 27

    Google Scholar 

  • Li ZY, Ge XH (2007) Unique chromosome behavior and genetic control in Brassica × Orychophragmus wide hybrids: a review. Plant Cell Rep. doi:10.1007/s00299-006-0290–7

  • Li Z, Liu HL, Luo P (1995) Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet 91:131–136

    Google Scholar 

  • Li R, Rimmer R, Buchwaldt L, Sharpe AG, Seguin-Swartz G, Coutu C, Hegedus DD (2004) Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal Genet Biol 41:735–753

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Li ZY (2007) Genome doubling and chromosome elimination with fragment recombination leading to the formation of Brassica rapa-type plants with genomic alterations in crosses with Orychophragmus violaceus. Genome (in press)

  • Liu B, Wendel JF (2000) Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43:874–880

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Wang X, Fan Z, Pang Y, Sun X, Wang X, Tanga K (2004a) Molecular cloning and characterization of a novel cold-regulated gene from Capsella bursa-pastoris. DNA Seq 15:262–268

    PubMed  CAS  Google Scholar 

  • Liu ZL, Wang YM, Shen Y, Guo WL, Hao S, Liu B (2004b) Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia. Plant Mol Biol 54:571–582

    Article  PubMed  CAS  Google Scholar 

  • Luo P, Fu HL, Lan ZQ, Zhou SD, Zhou HF, Luo Q (2003) Phytogenetics studies on intergeneric hybridization between Brassica napus and Matthiola incana. Acta Bot Sin 45:432–436

    Google Scholar 

  • Ma N, Li ZY, Cartagena JA, Fukui K (2006) GISH and AFLP analyses of novel Brassica napus lines derived from one hybrid between B. napus and Orychophragmus violaceus. Plant Cell Rep 25:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Martin-Sanchez JA, Gomez-Colmenarejo M, Del Moral J, Sin E, Montes MJ, Gonzalez-Belinchon C, Lopez-Brana I, Delibes A (2003) A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet 106:1248–1255

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Natali L, Giordani T, Polizzi E, Pugliesi C, Fambrini M, Cavallini A (1998) Genomic alterations in the interspecific hybrid Helianthus annuus × Helianthus tuberosus. Theor Appl Genet 97:1240–1247

    Article  CAS  Google Scholar 

  • Park RJ (1967) The occurrence of mustard oil glucosides in Lepidium hyssopifolium Desv., L. bonariense (L.) and Capsella bursa pastoris (L.). Medic Aust J Chem 20:2799–2801

    Article  CAS  Google Scholar 

  • Peterka H, Budahn H, Schrader O, Ahne R, Schütze W (2004) Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomic chromosome addition. Theor Appl Genet 109:30–41

    Article  PubMed  CAS  Google Scholar 

  • Prakash NS, Marques DV, Varzea VM, Silva MC, Combes MC, Lashermes P (2004) Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into C. arabica L. Theor Appl Genet 109:1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Riera-Lizarazu O, Rines HW, Phillips RL (1996) Cytological and molecular characterization of oat × maize partial hybrids. Theor Appl Genet 93:123–135

    Article  CAS  Google Scholar 

  • Ronicke S, Hahn V, Horn R, Grone I, Brahm L, Schnabl H, Friedt W (2004) Interspecific hybrids of sunflower as a source of Sclerotinia resistance. Plant Breed 123:152–157

    Article  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    Article  PubMed  CAS  Google Scholar 

  • Shan XH, Liu ZL, Dong ZY, Wang YM, Chen Y et al (2005) Mobilization of the active mite transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22:976–990

    Article  PubMed  CAS  Google Scholar 

  • Sigareva MA, Earle ED (1999) Regeneration of plants from protoplasts of Capsella bursa-pastoris and somatic hybridization with rapid cycling Brassica oleracea. Plant Cell Rep 18:412–417

    Article  CAS  Google Scholar 

  • Snowdon RJ (2007) Cytogenetics and genome analysis in Brassica crops. Chromosome Res 15:85–95

    Article  PubMed  CAS  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploidy evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang YM, Dong ZY, Zhang ZJ, Lin XY, Shen Y, Zhou D, Liu B (2005) Extensive de Novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics 170:1945–1956

    Article  PubMed  CAS  Google Scholar 

  • Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    Article  PubMed  CAS  Google Scholar 

  • Zhao HJ, Huang YJ, Wang YY (1995) Comparison experiments of new lines from the intergeneric crosses between Brassica napus and Capsella bursa-pastoris, Isatis indigotica. Hubei J Agri Sci 1:8–11

    Google Scholar 

  • Zhong XB, Hans de Jong J, Zabel P (1996) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4:24–28

    Article  PubMed  CAS  Google Scholar 

  • Zhou TY (1987) Flora of China, vol 33. Science Press, Beijing, pp 84–85

    Google Scholar 

Download references

Acknowledgments

The study was supported by Hubei Provinc Natural Science Foundation (2002AC015) and by a grant from Education Ministry of PR China and by PCSIRT (IRT0442). We thank Honghai Guo for S. sclerotiorum infection and Dr. Xianhong Ge for discussions. The critical reading of the manuscript by Prof. Shyam Prakash from Indian Agricultural Research Institute, New Delhi is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-Yun Li.

Additional information

Communicated by K. Toriyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HF., Wang, H. & Li, ZY. Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris . Plant Cell Rep 26, 1791–1800 (2007). https://doi.org/10.1007/s00299-007-0392-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0392-x

Keywords

Navigation