Skip to main content
Log in

Breeding for root-knot nematode resistance in fruiting Solanaceous vegetable crops: a review

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Root‐knot nematodes (Meloidogyne spp.) are the major group of plant parasitic nematodes impeding the cultivation of fruiting Solanaceous vegetable crops i.e., tomato, pepper, and eggplant worldwide. In the last two decades, significant progress has been achieved in the development of management strategies, however, the management of root-knot nematodes is still a serious concern due to their wide diversity of species and host range. Host plant resistance is the most viable and eco-friendly strategy. The knowledge of the available genetic resources of the cultivated and their related wild species with resistance to root-knot nematodes, gene action, and available molecular markers associated with resistance is crucial for breeding resistant/tolerant varieties/hybrids. With advances in next-generation sequencing technologies, fine mapping and the development of precise markers will aid in accelerated marker-assisted breeding. Recently grafting, which explores resistant rootstocks for managing root-knot nematodes has also been shown to be highly promising in Solanaceous vegetable crops. The current review highlights the present understanding of root-knot nematodes, resistant genetic resources, breeding of rootstocks, and advancements made in traditional and marker-assisted breeding for root-knot nematode resistance in tomato, pepper, and eggplant globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd-Elgawad MM, Askary TH (2015) Impact of phytonematodes on agriculture economy (3–49) Wallingford: CAB International

  • Abegaz B, Seid A, Meressa BH, Fininsa C, Dejene M, Woldetsadik K (2019) Evaluation of hot pepper (Capsicum annum and C. frutescens) genotypes for resistance and egg hatching suitability to Meloidogyne incognita and M. javanica populations from Ethiopia. Russ J Nematol 27(2):83–96. https://doi.org/10.24411/0869-6918-2019-10009

  • Afifah EN, Murti RH, Nuringtyas TR (2019) Metabolomics approach for the analysis of resistance of four tomato genotypes (Solanum lycopersicum L.) to root-knot nematodes (Meloidogyne incognita). Open Life Sci 14(1):141–149. https://doi.org/10.1515/biol-2019-0016

  • Ainurrachmah A, Indarti S (2022) Response of Indonesian eggplants due to nematode attack and genetic diversity revealed by SSR marker. In: 2nd International conference on smart and innovative agriculture (ICoSIA 2021). (363–370). Atlantis Press.https://doi.org/10.2991/absr.k.220305.056

  • Alene AT, Mariam ZG (2021) Evaluation of tomato (Lycopersicon Esculentum Miller) varieties for nematode and ralstonia diseases resistance and productivity. Open J Plant Sci 6(1):001–010. https://doi.org/10.17352/ojps.000025

  • Ali AHH, Hasnin NM, Mahmoud AMA, Kesba HH (2015) Evaluation of some tomato genotypes to Meloidogyne incognita resistance. Am Eurasian J Agric Environ Sci 15(7):1402–1410. https://doi.org/10.5829/idosi.aejaes.2015.15.7.12707

    Article  Google Scholar 

  • Alvarez I (2020) DNA transposons drive genome evolution of the root-knot nematode Meloidogyne incognita. Peer Community Evolut Biol (1), 100106. https://doi.org/10.1101/2020.04.30.069948

  • Álvarez-Ortega S, Brito JA, Subbotin S (2019) Multigene phylogeny of root-knot nematodes and molecular characterization of Meloidogyne nataliei Golden, Rose & Bird, 1981 (Nematoda: Tylenchida). Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-48195-0

    Article  CAS  Google Scholar 

  • Ammati M, Thomason IJ, McKinney HE (1986) Retention of resistance to Meloidogyne incognita in Lycopersicon genotypes at high soil temperature. J Nematol 18:491–495

  • Ammiraju J, Veremis J, Huang X, Roberts P, Kaloshian I (2003) The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106(3):478–484. https://doi.org/10.1007/s00122-002-1106-y

    Article  CAS  PubMed  Google Scholar 

  • Arens P, Mansilla C, Deinum D, Cavellini L, Moretti A, Rolland S, van der Schoot H, Calvache D, Ponz F, Collonnier C, Mathis R (2010) Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theor Appl Genet 120(3):655–664. https://doi.org/10.1007/s00122-009-1183-2

    Article  CAS  PubMed  Google Scholar 

  • Asghar A, Mukhtar T, Raja MU, Gulzar A (2020) Interaction between Meloidogyne javanica and Ralstonia solanacearum in chili. Pak J Zool 52(4):1525–1525. https://doi.org/10.17582/journal.pjz/20190501030529

  • Aydınlı G, Mennan S (2019) Resistance response of tomato cultivars and rootstocks carrying the Mi-1.2 gene to isolates of Meloidogyne arenaria, M. incognita, and M. javanica at two different growing periods. J Hortic Sci Technol 509–519. https://doi.org/10.7235/HORT.20190051

  • Aydınlı G, Mennan S (2022) Yield and resistance of tomato rootstocks to Meloidogyne arenaria in a greenhouse. Pesqui Agropecu Bras 57. https://doi.org/10.1590/S1678-3921.pab2022.v57.02418

  • Barbary A, Djian-Caporalino C, Marteu N, Fazari A, Caromel B, Castagnone-Sereno P, Palloix A (2016) Plant genetic background increasing the efficiency and durability of major resistance genes to root-knot nematodes can be resolved into a few resistance QTLs. Front Plant Sci 7:632. https://doi.org/10.3389/fpls.2016.00632

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbary A, Palloix A, Fazari A, Marteu N, Castagnone-Sereno P, Djian-Caporalino C (2014) The plant genetic background affects the efficiency of the pepper major nematode resistance genes Me1 and Me3. Theor Appl Genet 127(2):499–507. https://doi.org/10.1007/s00122-013-2235-1

    Article  CAS  PubMed  Google Scholar 

  • Barrett CE, Zhao X, McSorley R (2012) Grafting for root-knot nematode control and yield improvement in organic heirloom tomato production. Hort Sci 47(5):614–620. https://doi.org/10.21273/HORTSCI.47.5.614

  • Bavaresco LG, Guaberto LM, Araujo FF (2020) Interaction of Bacillus subtilis with resistant and susceptible tomato (Solanum lycopersicum L.) in the control of Meloidogyne incognita. Arch Phytopathol Plant Prot 54(7–8):359–374. https://doi.org/10.1080/03235408.2020.1833279

  • Bhavana P, Singh AK, Kumar R, Prajapati GK, Thamilarasi K, Manickam R, Maurya S, Choudhary JS (2019) Identification of resistance in tomato against root-knot nematode (Meloidogyne incognita) and comparison of molecular markers for Mi gene. Australas Plant Pathol 48(2):93–100. https://doi.org/10.1007/s13313-018-0602-8

    Article  CAS  Google Scholar 

  • Bogoescu M, Doltu M (2015) Effect of grafting eggplant (Solanum melongena L.) on its selected useful characters. Bull Univ Agric Sci Vet Med Cluj-Napoca. Hortic 72(2). https://doi.org/10.15835/buasvmcn-hort:11349

  • Boneti JIS, Ferraz S (1981) Modificação do método de Hussey & Barker para extração de ovos de Meloidogyne exigua de raízes de cafeeiro. Fitopatol Bras 6(3)

  • Bozbuga R, Dasgan HY, Akhoundnejad Y, Imren M, Günay OC, Toktay H (2020) Effect of Mi gene and nematode resistance on tomato genotypes using molecular and screening assay. Cytol Genet 54(2):154–164. https://doi.org/10.3103/S0095452720020048

    Article  Google Scholar 

  • Bybd DW Jr, Kirkpatrick T, Barker K (1983) An improved technique for clearing and staining plant tissues for the detection of nematodes. J Nematol 15(1):142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Fasio JA, Martínez-Gallardo JA, Ayala-Tafoya F, López-Orona CA, Allende-Molar R, Retes-Manjarrez JE (2020) Screening for resistance to Meloidogyne enterolobii in Capsicum annuum landraces from Mexico. Plant Dis 104(3):817–822. https://doi.org/10.1094/PDIS-04-19-0718-RE

    Article  CAS  PubMed  Google Scholar 

  • Changkwian A, Venkatesh J, Lee JH, Han JW, Kwon JK, Siddique MI, Solomon AM, Choi GJ, Kim E, Seo Y, Kim YH (2019) Physical localization of the root-knot nematode (Meloidogyne incognita) resistance locus Me7 in pepper (Capsicum annuum). Front Plant Sci 10:886. https://doi.org/10.3389/fpls.2019.00886

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen R, Li H, Zhang L, Zhang J, Xiao J, Ye Z (2007) CaMi, a root-knot nematode resistance gene from hot pepper (Capsicum annuum L.) confers nematode resistance in tomato. Plant cell rep 26:895–905. https://doi.org/10.1007/s00299-007-0304-0

  • Colak-Ates A, Fidan H, Ozarslandan A, Ata A (2018) Determination of the resistance of certain eggplant lines against Fusarium wilt, potato Y potyvirus and root-knot nematode using molecular and classic methods. Fresenius Environ Bull 27:7446–7453

    CAS  Google Scholar 

  • Collett RL, Marais M, Daneel M, Rashidifard M, Fourie H (2021) Meloidogyne enterolobii, a threat to crop production with particular reference to sub-Saharan Africa: an extensive, critical and updated review. Nematol 23(3):247–285. https://doi.org/10.1163/15685411-bja10076

    Article  CAS  Google Scholar 

  • Cortada L, Manzano P, Sorribas FJ, Ornat C, Verdejo-Lucas S (2010) The resistance response of Solanum huaylasense accession LA1358 to Meloidogyne spp. Nematropica 31–40

  • Cukrov M, Podrug I, Urlić B, Mandušić M, Žanić K, Radpudić E, Slatnar A, Dumičić G (2021) Effectiveness of grafting and biostimulants application as a strategy for enhancing tomato nematode resistance. In: VIII South-Eastern Europe symposium on vegetables and potatoes (1320) 283–290. https://doi.org/10.17660/ActaHortic.2021.1320.37

  • Çürük S, Dasgan HY, Mansuroğlu S, Kurt Ş, Mazmanoğlu M, Antaklı Ö, Tarla G (2009) Grafted eggplant yield, quality, and growth in infested soil with Verticillium dahliae and Meloidogyne incognita. Pesqui Agropecu Bras 44:1673–1681. https://doi.org/10.1590/S0100-204X2009001200017

    Article  Google Scholar 

  • da Silva AJ, de Oliveira GH, Pastoriza RJ, Maranhão EH, Pedrosa EM, Maranhão SR, Boiteux LS, Pinheiro JB, de Carvalho JLS (2019) Search for sources of resistance to Meloidogyne enterolobii in commercial and wild tomatoes. Hortic Bras 37:188–198. https://doi.org/10.1590/S0102-053620190209

    Article  Google Scholar 

  • Dávila-Negrón M, Dickson DW (2013) Comparative thermal-time requirements for development of meloidogyne arenaria, m. Incognita, and m. Javanica, at constant temperatures [comparación de requisitos térmicos para el desarrollo de meloidogyne arenaria, m. Incognita, and m. Javanica temperatu. Nematropica 43(2):152–163

  • de Carvalho LM, Benda ND, Vaughan MM, Cabrera AR, Hung K, Cox T, Abdo Z, Allen LH, Teal PE (2015) Mi-1-mediated nematode resistance in tomatoes is broken by short-term heat stress but recovers over time. J Nematol 47(2):133

    Google Scholar 

  • Devran Z, Başköylü B, Taner A, Doğan F (2013) Comparison of PCR-based molecular markers for identification of Mi gene. Acta Agric Scand Sect B–Soil Plant Sci 63(5):395–402. https://doi.org/10.1080/09064710.2013.771700

  • Devran Z, Söğüt MA (2014) Response of heat-stable tomato genotypes to Mi-1 virulent root-knot nematode populations. Turkey Entomol Derg 38(3): 229–238. https://doi.org/10.16970/ted.54290

  • Dias MC, Conceição IL, Abrantes I, Cunha MJ (2012) Solanum sisymbriifolium-a new approach for the management of plant-parasitic nematodes. Eur J Plant Pathol 133(1):171–179. https://doi.org/10.1007/s10658-012-9945-0

    Article  Google Scholar 

  • Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I, Abad P (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114(3):473–486. https://doi.org/10.1007/s00122-006-0447-3

  • Djian-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O’byrne C, Abad P (2001) High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.). Theor Appl Genet 103(4):592–600. https://doi.org/10.1007/PL00002914

  • Eisenback JD, Triantaphyllou HH (2020) Root-knot nematodes: Meloidogyne species and races. In: Manual of agricultural nematology. CRC Press, pp 191–274

  • El-Nuby A, Bayomi KM (2019) Evaluation of tomato inbreed lines for resistance to root-gall nematode. Egypt J Desert Res 69(3):33–46. https://doi.org/10.21608/ejdr.2020.16267.1031

  • El-Sappah AH, MM I, H. El-awady H, Yan S, Qi S, Liu J, Liang Y (2019) Tomato natural resistance genes in controlling the root-knot nematode. Genes 10(11):925. https://doi.org/10.3390/genes10110925

  • EPPO (2022) EPPO global database. https://gd.eppo.int/search?k=meloidogyne+. Accessed 24th Nov 2022

  • FAOSTAT (2020) http://www.fao.org/faostat/en/. Accessed on 23rd Dec 2022

  • Fazari A, Palloix A, Wang L, Yan Hua M, Sage‐Palloix AM, Zhang BX, Djian‐Caporalino C (2012) The root‐knot nematode resistance N‐gene co‐localizes in the Me‐genes cluster on the pepper (Capsicum annuum L.) P9 chromosome. Plant Breed 131(5):665–673. https://doi.org/10.1111/j.1439-0523.2012.01994.x

  • Gabriel M, Kulczynski SM, Muniz MF, Boiteux LS, Carneiro RM (2020) Reaction of a heterozygous tomato hybrid bearing the Mi‐1.2 gene to 15 Meloidogyne species. Plant Pathol 69(5): 944–952. https://doi.org/10.1111/ppa.13179

  • Gad SC (2014) Nematicides. In: Encyclopedia of toxicology, 3rd edn. Academic Press, pp 473–474. https://doi.org/10.1016/B978-0-12-386454-3.00888-5

  • Gálvez A, del Amor FM, Ros C, López-Marín J (2019) New traits to identify physiological responses induced by different rootstocks after root-knot nematode inoculation (Meloidogyne incognita) in sweet pepper. Crop Prot 119:126–133. https://doi.org/10.1016/j.cropro.2019.01.026

    Article  Google Scholar 

  • García-Mendívil HA, Sorribas FJ (2019) Fitness cost but no selection for virulence in Meloidogyne incognita after two consecutive crops of eggplant grafted onto Solanum torvum. Plant Pathol 68(9):1602–1606. https://doi.org/10.1111/ppa.13092

    Article  CAS  Google Scholar 

  • Geboloğlu N, Yanar Y, Yanar D, Akyazi F, Çakmak P (2011) Role of different rootstocks on yield and resistance for Fusarium oxysporium, Verticillium dahliae and Meloidogyne incognita in grafted peppers. Eur J Hortic Sci 76(2):41

    Google Scholar 

  • Giné A, Monfort P, Sorribas FJ (2021) Creation and validation of a temperature-based phenology model for Meloidogyne incognita on common bean. Plants 10(2):240. https://doi.org/10.3390/plants10020240

    Article  PubMed Central  Google Scholar 

  • Giné Blasco A (2016) Population dynamics of Meloidogyne spp. on tomato and cucumber and biologically-based management strategies

  • Gisbert C, Prohens J, Raigón MD, Stommel JR, Nuez F (2011) Eggplant relatives as sources of variation for developing new rootstocks: effects of grafting on eggplant yield and fruit apparent quality and composition. Sci Hortic 128(1):14–22. https://doi.org/10.1016/j.scienta.2010.12.007

    Article  Google Scholar 

  • Gisbert C, Trujillo-Moya C, Sánchez-Torres P, Sifres A, Sánchez-Castro E, Nuez F (2013) Resistance of pepper germplasm to Meloidogyne incognita. Ann Appl Biol 162(1):110–118. https://doi.org/10.1111/aab.12006

    Article  CAS  Google Scholar 

  • Gómez-Rodríguez O, Corona-Torres T, Aguilar-Rincón VH (2017) Differential response of pepper (Capsicum annuum L.) lines to Phytophthora capsici and root-knot nematodes. Crop prot 92:148–152

  • Gonçalves LS, Gomes VM, Robaina RR, Valim RH, Rodrigues R, Aranha FM (2014) Resistance to root-knot nematode (Meloidogyne enterolobii) in Capsicum spp. accessions. Rev Bras Cienc Agrar 9(1):49–52. https://doi.org/10.5039/agraria.v9i1a3496

  • Hajihassani A, Rutter WB, Schwarz T, Woldemeskel M, Ali ME, Hamidi N (2020) Characterization of resistance to major tropical root-knot nematodes (Meloidogyne spp.) in Solanum sisymbriifolium. Phytopathol 110(3):666–673. https://doi.org/10.1094/PHYTO-10-19-0393-R

  • Hallmann J, Kiewnick S (2018) Virulence of Meloidogyne incognita populations and Meloidogyne enterolobii on resistant cucurbitaceous and solanaceous plant genotypes. J Plant Dis Prot 125(4):415–424. https://doi.org/10.1007/s41348-018-0165-5

    Article  Google Scholar 

  • Hassanaly Goulamhoussen R (2021) Involvment of epigenetic mechanisms in the root-knot nematode Meloidogyne incognita

  • Hunt DJ, Luc M, Manzanilla-López RH (2005) Identification, morphology and biology of plant parasitic nematodes. In: Luc M, Sikora R, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CAB International, Wallingford, pp 11–52

    Chapter  Google Scholar 

  • Hussey RS, Baker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:102–1028

    Google Scholar 

  • Jablonska B, Ammiraju JS, Bhattarai KK, Mantelin S, de Ilarduya OM, Roberts PA, Kaloshian I (2007) The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol 143:1044–1054. https://doi.org/10.1104/pp.106.089615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiteh F, Kwoseh C, Akromah R, Gambia T (2012) Evaluation of tomato genotypes for resistance to rootknot nematodes. African Crop Sci J 20:41–49

    Google Scholar 

  • Janati S, Houari A, Wifaya A, Essarioui A, Mimouni A, Hormatallah A, Mokrini F (2018) Occurrence of the root-knot nematode species in vegetable crops in Souss region of Morocco. Plant Pathol J 34(4):308. https://doi.org/10.5423/PPJ.OA.02.2018.0017

    Article  PubMed  PubMed Central  Google Scholar 

  • Jatav V, Sadashiv AT, Ravishankar KV, Venugopalan R, Umamaheshwari R, Rao MS (2019) Identification of new stable resistant sources to Meloidogyne incognita using conventional and marker assisted selection in tomato (Solanum lycopersicum). Russ J Nematol 27(2):97–106

    Google Scholar 

  • Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14(9):946–961. https://doi.org/10.1111/mpp.12057

    Article  PubMed  PubMed Central  Google Scholar 

  • Kassie YG (2019) Status of root-knot nematode (Meloidogyne Species) and Fusarium wilt (Fusarium oxysporum) disease complex on tomato (Solanum lycopersicum L.) in the central Rift Valley, Ethiopia. Agric Sci 10(8):1090–1103. https://doi.org/10.4236/as.2019.108082

  • Kaur R, Brito JA, Dickson DW, Stanley JD (2006) First Report of Meloidogyne mayaguensis on Angelonia angustifolia. Plant Dis 90(8):1113–1113. https://doi.org/10.1094/PD-90-1113A

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Siddiqui ZA (2017) Interactions of Meloidogyne incognita, Ralstonia solanacearum and Phomopsis vexans on eggplant in sand mix and fly ash mix soils. Sci Hortic 225:177–184. https://doi.org/10.1016/j.scienta.2017.06.016

    Article  Google Scholar 

  • Lefebvre V, Goffinet B, Chauvet JC, Caromel B, Signoret P, Brand R, Palloix A (2001) Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes: comparison of AFLP, RAPD and phenotypic data. Theor Appl Genet 102(5):741–750. https://doi.org/10.1007/s001220051705

    Article  CAS  Google Scholar 

  • Liu N, Zhou B, Zhao X, Lu B, Li Y, Hao J (2009) Grafting eggplant onto tomato rootstock to suppress Verticillium dahliae infection: the effect of root exudates. HortSci 44(7):2058–2062. https://doi.org/10.21273/HORTSCI.44.7.2058

  • Lizardo RCM, Pinili MS, Diaz MGQ, Cumagun CJR (2022) Screening for resistance in selected tomato varieties against the root-knot nematode Meloidogyne incognita in the Philippines using a molecular marker and biochemical analysis. Plants 11(10):1354. https://doi.org/10.3390/plants11101354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Perez JA, Le Strange M, Kaloshian I, Ploeg AT (2006) Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Prot 25(4):382–388. https://doi.org/10.1016/j.cropro.2005.07.001

    Article  Google Scholar 

  • Lu R, Van Beers R, Saeys W, Li C, Cen H (2020) Measurement of optical properties of fruits and vegetables: a review. Postharvest Biol Technol 159:111003. https://doi.org/10.1016/j.postharvbio.2019.111003

  • Maquilan MAD, Padilla DC, Dickson DW, Rathinasabapathi B (2020) Improved resistance to root-knot nematode species in an advanced inbred line of specialty pepper (Capsicum annuum). HortSci 55(7):1105–1110

    Article  Google Scholar 

  • Marques MLS, Chadud JVG, Oliveira MF, Nascimento AR, Rocha MR (2019) Identification of chili pepper genotypes (Capsicum spp.) resistant to Meloidogyne Enterolobii. J Agric Sci 11:165–175. https://doi.org/10.5539/jas.v11n8p165

    Article  Google Scholar 

  • Marques MLS, Oliveira MF, Pereira PS, Rocha MR (2020) Penetration and development of Meloidogyne enterolobii in resistant and susceptible Capsicum spp. Eur J Hortic Sci 85(2):86–91. https://doi.org/10.17660/eJHS.2020/85.2.2

  • Morris KA, Langston DB, Davis RF, Noe JP, Dickson DW, Timper P (2016) Efficacy of various application methods of fluensulfone for managing root-knot nematodes in vegetables. J Nematol 48(2):65. https://doi.org/10.21307/jofnem-2017-010

  • Moslehi S, Niknam G, Seyed AM, Maghsoud P (2015) Response of tomato wild species, landraces and commercial cultivars to Meloidogyne javanica infection as revealed by molecular and conventional approaches. J Bio Env Sci 7(6):80–89

    Google Scholar 

  • Murata G, Uehara T, Lee HJ, Mizutani M, Kadota Y, Shinmura Y, Uesugi K (2022) Solanum palinacanthum Dunal as a potential eggplant rootstock resistant to root-knot nematodes. J Phytopathol 170(3):185–193. https://doi.org/10.1111/jph.13067

    Article  CAS  Google Scholar 

  • Murata G, Uesugi K, Uehara T, Kumaishi K, Ichihashi Y, Saito T, Shinmura Y (2020) Solanum palinacanthum: broad‐spectrum resistance to root‐knot nematodes (Meloidogyne spp.). Pest Manag Sci 76(12):3945–3953. https://doi.org/10.1002/ps.5942

  • Naresh P, Meenu K, Acharya GC, Reddy AC, DCL R (2019) Genetics and molecular markers for resistance to major soil borne pathogens in chilli (Capsicum annuum L.). Res. J. Biotech 14 (1):101–105.

  • Nayak MKPDK (2019) Screening and evaluation of tomato varieties against root-knot nematode, Meloidogyne incognita. J Entomol Zool Stud 7(3):820–823

  • Nguyen CN (2016) Comprehensive transcriptome profiling of root-knot nematodes during plant infection and characterisation of species-specific trait (Doctoral dissertation, Université Côte d'Azur)

  • Nwankwo EN, Onuseleogu DC, Ogbonna CU, Okorocha AOE (2016) Effect of neem leaf extracts (Azadirachta indica) and synthetic pesticide (Carbofuran) on the root-knot nematode (Meloidogyne spp) of cowpea (Vigna unguiculata L. Walp). Int J Entomol Res 1(3):1–6

  • Öçal S, Özalp T, Devran Z (2018) Reaction of wild eggplant Solanum torvum to different species of root-knot nematodes from Turkey. J Plant Dis Prot 125:577–580

  • Oka Y (2019) Survival of Meloidogyne javanica during the summer season under semiarid conditions. Eur J Plant Pathol 155:917–926. https://doi.org/10.1007/s10658-019-01823-x

    Article  CAS  Google Scholar 

  • Oka Y (2020) From old-generation to next-generation nematicides. Agronomy 10(9):1387. https://doi.org/10.3390/agronomy10091387

  • Oka Y, Offenbach R, Pivonia S (2004) Pepper rootstock graft compatibility and response to Meloidogyne javanica and M. incognita. J Nematol 36(2):137

  • Okorley BA, Agyeman C, Amissah N, Nyaku ST (2018) Screening selected Solanum plants as potential rootstocks for the Management of Root-Knot Nematodes (Meloidogyne incognita). Int J Agron. https://doi.org/10.1155/2018/6715909

    Article  Google Scholar 

  • Olowe T (2006) The influence of climatic features on distribution and infection of root-knot nematodes Meloidogyne spp, n cowpea growing areas in Nigeria. Ife J Sci 8(2):185–192. https://doi.org/10.4314/ijs.v8i2.32218

    Article  Google Scholar 

  • Palomares-Rius JE, Escobar C, Cabrera J, Vovlas A, Castillo P (2017) Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Front Plant Sci 8:1987. https://doi.org/10.3389/fpls.2017.01987

    Article  PubMed  PubMed Central  Google Scholar 

  • Perpétuo LS, da Cunha MJ, Batista MT, Conceição IL (2021) Solanum linnaeanum and Solanum sisymbriifolium as a sustainable strategy for the management of Meloidogyne chitwoodi. Sci Rep 11(1):1–8. https://doi.org/10.1038/s41598-020-77905-2

    Article  CAS  Google Scholar 

  • Pinheiro JB, da Silva GO, Biscaia D, da Cruz MC, de Souza LR, de Souza PW, de Melo RADC (2022) Resistance sources to Meloidogyne enterolobii of wild Solanum species and interspecific hybrids. Hortic Bras 40(3):275–280. https://doi.org/10.1590/s0102-0536-20220305

    Article  Google Scholar 

  • Pinheiro JB, da Silva GO, de Jesus JG, Biscaia D, de Castro RA (2021) Evaluation of eggplant and gilo genotypes and interspecific hybrids as to root-knot nematode resistance. Colloquium Agrariae 17(2):30–38. https://doi.org/10.5747/ca.2021.v17.n2.a427

    Article  Google Scholar 

  • Pinheiro JB, Silva GOD, Macêdo AG, Biscaia D, Ragassi CF, Ribeiro CS, Reifschneider FJB (2020) New resistance sources to root-knot nematode in Capsicum pepper. Hortic Bras 38:33–40. https://doi.org/10.1590/S0102-053620200105

    Article  Google Scholar 

  • Ragassi CF, Ribeiro CSDC, Patiño-Torres A, Lopes CA, Pinheiro JB, Reis A (2022) Bell pepper rootstocks with multiple resistance to soilborne diseases. Revista Ceres 69:299–307. https://doi.org/10.1590/0034-737X202269030007

    Article  Google Scholar 

  • Rahman MA, Rashid MA, Salam MA, Masud MAT, Masum ASMH, Hossain MM (2002) Performance of some grafted eggplant genotypes on wild Solanum rootstocks against root-knot nematode. Online J Biol Sci 2:446–448

  • Ralmi NHAA, Khandaker MM, Mat N (2016) Occurrence and control of root knot nematode in crops: a review. Aust J Crop Sci 10(12):1649–1654. https://doi.org/10.21475/ajcs.2016.10.12.p7444

  • Rashid B, Tariq M, Khalid A, Shams F, Ali Q, Ashraf F, Husnain T (2017) Crop improvement: new approaches and modern techniques. Plant Gene Trait 8(3):18–30

    Google Scholar 

  • Razdan VK, Gupta V, Gupta V (2013) Wilt intensity on brinjal crop due to the interaction of various soil borne pathogens. Indian Phytopathol 66:269–272

    Google Scholar 

  • Reddy YS, Sellaperumal C, Prasanna HC, Yadav A, Kashyap SP, Singh S, Singh B (2018) Screening of tomato genotypes against root-knot nematode and validation of Mi 1 gene linked markers. Biol Sci 88(1):65–72. https://doi.org/10.1007/s40011-016-0731-1

    Article  CAS  Google Scholar 

  • Rivard CL, O’Connell S, Peet MM, Louws FJ (2010) Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Dis 94(8):1015–1021. https://doi.org/10.1094/PDIS-94-8-1015

    Article  CAS  PubMed  Google Scholar 

  • Rusinque L, Nóbrega F, Serra C, Inácio ML (2022) The Northern root-knot nematode Meloidogyne hapla: new host records in Portugal. Biology 11(11):1567. https://doi.org/10.3390/biology11111567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu Y, Kim D (2011) Effects of eggplant rootstocks on root-knot nematode (Meloidogyne arenaria), race 2. Organic Crop Prod 1:619–622

    Google Scholar 

  • Sahu A, Mahalik JK, Behera SK (2019) Management of root knot nematode, Meloidogyne incognita in Indian spinach, (Basella alba L.) through organic amendments. J Entomol Zool Stud 7(6):428–431

    Google Scholar 

  • Sánchez-Solana F, Ros C, del Mar GM, Lacasa CM, Sánchez-López E, Lacasa A (2016) New pepper accessions proved to be suitable as a genetic resource for use in breeding nematode-resistant rootstocks. Plant Genet Resour 14(1):28–34. https://doi.org/10.1017/S1479262115000027

    Article  Google Scholar 

  • Santos D, Martins da Silva P, Abrantes I, Maleita C (2020) Tomato Mi-1.2 gene confers resistance to Meloidogyne luci and M. ethiopica. Eur J Plant Pathol 156(2):571–580. https://doi.org/10.1007/s10658-019-01907-8

  • Sargın S, Devran Z (2021) Degree of resistance of Solanum torvum cultivars to Mi-1.2-virulent and avirulent isolates of Meloidogyne incognita, Meloidogyne javanica, and Meloidogyne luci. J Nematol 53(1):1–7. https://doi.org/10.21307/jofnem-2021-068

  • Seid A, Fininsa C, Mekete TM, Decraemer W, Wesemael WML (2017) Resistance screening of breeding lines and commercial tomato cultivars for Meloidogyne incognita and M. javanica populations (Nematoda) from Ethiopia. Euphytica 213(4):1–15. https://doi.org/10.1007/s10681-017-1886-4

  • Seid A, Fininsa C, Mekete TM, Wesemael WM, Decraemer W (2018) Heat stability of resistance in selected tomato breeding lines against Meloidogyne incognita and M javanica populations under elevated soil temperatures. Russ J Nematol 26(1):51–61

    Google Scholar 

  • Sharma M, Kaushik P (2021) Breeding for root-knot nematode resistance in eggplant: progress and prospects. Preprints 2021, 2021040444. https://doi.org/10.20944/preprints202104.0444.v1

  • Sharma V, Kumar P, Sharma P, Sharma PK, Negi ND, Sharma A (2019) Root-knot nematode (Meloidogyne incognita) amelioration in tomato under protected conditions through rootstocks. J Ento Zool Stud 7(3):1518–1523

    Google Scholar 

  • Silva EM, Souza Pollo A, Nascimento DD, Ferreira RJ, Duarte SR, Fernandes JPP, Soares PLM (2021) First report of root-knot nematode Meloidogyne enterolobii infecting sweet potato in the State of Rio Grande do Norte, Brazil. Plant Dis 105(5):1571. https://doi.org/10.1094/PDIS-11-20-2472-PDN

    Article  Google Scholar 

  • da Silva Rabelo J, de Almeida Guimarães M, Santos CDG, Neto BPL, de Araújo Hendges ARA, dos Santos Viana C,Tello JP, Neto HDSL (2018) Prospection and production of Solanaceae species resistant to the root-knot nematode. African J Agril Res 13(16):851–857

  • Simly D, Mohanty KC (2014) Screening of brinjal varieties against root-knot nematode, Meloidogyne Incognita. J Plant Prot Environ 11(1):122–123

    Google Scholar 

  • Singh N (2020) Emerging problem of guava decline caused by Meloidogyne enterolobii and Fusarium oxysporum f.sp. psidii. Indian Phytopathol 73(2):373–374. https://doi.org/10.1007/s42360-020-00198-y

  • Singh N, Siddiqui ZA (2012) Inoculation of Tomato with Ralstonia solanacearum, Xanthomonas campestris, and Meloidogyne javanica. Int J Veg Sci 18(1):78–86. https://doi.org/10.1080/19315260.2011.579232

    Article  Google Scholar 

  • Soares RS, Silva EHC, Candido WDS, Diniz GMM, Reifschneider FJB, Soares PLM, Braz LT (2018) Identificação de genótipos de capsicum resistentes a nematoides de galha. Biosci J 912–925

  • Southey JF (1970) Principles of sampling for mematodes. Technical Bulletin. Ministry of Agriculture, Fisheries and Food 5(2):1–4

  • Steyn WP, Daneel MS, Slabbert MM (2014) Host suitability and response of different vegetable genotypes to Meloidogyne incognita race 2 and Meloidogyne javanica in South Africa. Int J Pest Manag 60(1):59–66. https://doi.org/10.1080/09670874.2014.900587

    Article  Google Scholar 

  • Su X, Wang B, Geng X, Du Y, Yang Q, Liang B, Lin T (2021) A high-continuity and annotated tomato reference genome. BMC Genom 22(1):1–12. https://doi.org/10.1186/s12864-021-08212-x

    Article  CAS  Google Scholar 

  • Taylor AL, Sasser JN, Nelson LA (1982) Relationship of climate and soil characteristics to geographical distribution of Meloidogyne species in agricultural soils (p. 65). International Meloidogyne Project

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53. https://doi.org/10.1146/annurev.phyto.39.1.53

    Article  CAS  PubMed  Google Scholar 

  • Tzortzakakis EA, Conceição I, Dias AM, Simoglou KB, Abrantes I (2014) Occurrence of a new resistant breaking pathotype of Meloidogyne incognita on tomato in Greece. J Plant Dis Prot 121(4):184–186. https://doi.org/10.1007/BF03356508

    Article  Google Scholar 

  • Uncu AT, Celik I, Devran Z, Ozkaynak E, Frary A, Frary A, Doganlar S (2015) Development of a SNP-based CAPS assay for the Me1 gene conferring resistance to root knot nematode in pepper. Euphytica 206:393–399. https://doi.org/10.1007/s10681-015-1489-x

  • Verdejo-Lucas S, Blanco M, Cortada L, Sorribas FJ (2013) Resistance of tomato rootstocks to Meloidogyne arenaria and Meloidogyne javanica under intermittent elevated soil temperatures above 280C. Crop Prot 46:57–62. https://doi.org/10.1016/j.cropro.2012.12.013

    Article  Google Scholar 

  • Verdejo-Lucas S, Sorribas FJ (2008) Resistance response of the tomato rootstock SC 6301 to Meloidogyne javanica in a plastic house. Eur J Plant Pathol 121:103–107. https://doi.org/10.1007/s10658-007-9243-4

    Article  Google Scholar 

  • Veremis JC, Roberts PA (1996) Relationships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence. Theor Appl Genet 93(5):950–959. https://doi.org/10.1007/BF00224098

    Article  CAS  PubMed  Google Scholar 

  • Villain L, Sarah JL, Hernández A, Bertrand B, Anthony F, Lashermes P, Carneiro RMDG (2013) Diversity of root-knot nematodes parasitizing coffee in Central America [diversidad de nematodos agalladores asociados al cultivo de café en Centro América]. Nematropica 43(2):194–206

    Google Scholar 

  • Wang JF, Ho FI, Truong HTH, Huang SM, Balatero CH, Dittapongpitch V, Hidayati N (2013) Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’to Ralstonia solanacearum. Euphytica 190(2):241–252. https://doi.org/10.1007/s10681-012-0830-x

    Article  CAS  Google Scholar 

  • Wang KH, McSorley R (2008) Exposure time to lethal temperatures for Meloidogyne incognita suppression and its implication for soil solarization. J Nematol 40(1):7

    PubMed  PubMed Central  Google Scholar 

  • Wang LH, Gu XH, Hua MY, Mao SL, Zhang ZH, Peng DL, Zhang BX (2009) A SCAR marker linked to the N gene for resistance to root knot nematodes (Meloidogyne spp.) in pepper (Capsicum annuum L.). Sci Hortic 122(2):318–322. https://doi.org/10.1016/j.scienta.2009.04.011

  • Wang X, Fazari A, Cao Y, Zhang Z, Palloix A, Mao S, Wang L (2018) Fine mapping of the root-knot nematode resistance gene Me1 in pepper (Capsicum annuum L.) and development of markers tightly linked to Me1. Mol Breed 38(4):1–10. https://doi.org/10.1007/s11032-018-0793-2

  • Wesemael W, Viaene N, Moens M (2011) Root-knot nematodes (Meloidogyne spp.) in Europe. Nematol 13:3–16. https://doi.org/10.1163/138855410X526831

    Article  Google Scholar 

  • Williamson VM, Ho JY, Wu FF, Miller N, Kaloshian I (1994) A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor Appl Genet 87(7):757–763. https://doi.org/10.1007/BF00221126

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhu X, Wang Y, Liu X, Chen L, Duan Y (2018) The cold tolerance of the northern root-knot nematode, Meloidogyne hapla. PloS One 13(1):e0190531. https://doi.org/10.1371/journal.pone.0190531

  • Yaghoobi J, Kaloshian I, Wen Y, Williamson VM (1995) Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theor Appl Genet 91(3):457–464. https://doi.org/10.1007/BF00222973

    Article  CAS  PubMed  Google Scholar 

  • Yaghoobi J, Yates JL, Williamson VM (2005) Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus. Mol Genet Genom 274(1):60–69. https://doi.org/10.1007/s00438-005-1149-2

  • Zhou X, Liu J, Bao S, Yang Y, Zhuang Y (2018) Molecular cloning and characterization of a wild eggplant Solanum aculeatissimum NBS-LRR gene, involved in plant resistance to Meloidogyne incognita. Int J Mol Sci 19(2):583. https://doi.org/10.3390/ijms19020583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This study was initiated by PP and SB. All authors contributed to the study conception and design. Data collection and analysis were performed by PP, PN, and SB. PN and SB prepared the first draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Satyaprakash Barik.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, P., Naresh, P., Barik, S. et al. Breeding for root-knot nematode resistance in fruiting Solanaceous vegetable crops: a review. Euphytica 219, 71 (2023). https://doi.org/10.1007/s10681-023-03204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-023-03204-2

Keywords

Navigation