Skip to main content
Log in

Screening of Tomato Genotypes Against Root-Knot Nematode and Validation of Mi 1 Gene Linked Markers

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

In India, tomato (Solanum lycopersicum L.) suffers yield loss between 11 and 35 % due to root-knot nematode (RKN) (Meloidogyne spp.) infestation. Mi 1 gene in tomato confers resistance to the three most damaging RKN species viz, Meloidogyne incognita, M. arenaria and M. javanica. The loss can be averted through the use of cultivars containing Mi 1 gene or incorporating the gene in new cultivars. To identify resistant genotypes, in 2013–2014 a total of 32 genotypes were screened against M. incognita at 2000 J2/Kg inoculum. Genotypes, Motelle and H-88-78-1 have showed immune reaction. Mogor and Hisar Lalit also showed resistance reaction. In 2014–2015, nine genotypes including four immune/resistant lines from the last year were screened against RKN at two inoculation rates of 2000 and 4000 J2. Reaction of Motelle was similar at both inoculum levels. In other resistant genotypes there was increase in mean of gall index when the inoculum levels were increased. The genetic background had an effect on the variations observed in number of galls produced in the resistant genotypes. Marker assisted selection for resistant genes greatly enhance selection of resistant plants in breeding. To identify suitable marker, six polymerase chain reaction based co-dominant markers were used for molecular screening of Mi 1 gene. Four markers namely, REX-1, CT119, Mi23 and Pmi gave banding pattern in accordance with the reported literature. Considering tight linkage with the gene and assay cost two sequences characterized amplified region markers, Mi23 and Pmi can be preferred over other markers for selecting Mi 1 containing genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khan MR, Jain RK, Ghule TM, Pal S (2014) Root knot Nematodes in India-a comprehensive monograph. All India Coordinated Research Project on Plant Parasitic nematodes with Integrated approach for their Control, Indian Agricultural Research Institute, New Delhi

  2. Wang KH, Sipes BS, Schmitt DP (2002) Management of Rotylenchulus reniformis in pineapple, Ananas comosus, by intercycle cover crops. J Nematol 34:106–114

    PubMed  PubMed Central  Google Scholar 

  3. Natarajana N, Corkb A, Boomathia N, Pandia R, Velavana S, Dhakshnamoorthya G (2006) Cold aqueous extracts of African marigold, Tagetes erecta for control tomato root knot nematode, Meloidogyne incognita. Crop Prot 25:1210–1213

    Article  Google Scholar 

  4. Fassuliotis G (1985) The role of the nematologist in the development of resistant cultivars. In: Sasser JN, Carter CC (eds) An advanced treatise on meloidogyne, vol 1. North Carolina State University Graphics, Raleigh, pp 233–240

    Google Scholar 

  5. Bailey DM (1941) The seedling method for root-knot nematode resistance. Proc Am Hort Sci 38:573–575

    Google Scholar 

  6. Smith PG (1944) Embryo culture of a tomato species hybrid. Proc Am SOC Hort Sci 44:413–416

    Google Scholar 

  7. Gilbert JC, McGuire DC (1955) One major gene for resistance to severe galling from Meloidogyne incognita. Tomato Genet Coop Rep 5:15

    Google Scholar 

  8. Gilbert JC, McGuire DC (1956) Inheritance of resistance to severe root-knot from Meloidogyne incognita in commercial type tomatoes. Proc Am Soc Hort Sci 63:437–442

    Google Scholar 

  9. Gilbert JC (1958) Some linkage studies with the Mi gene for resistance to root-knot. Tomato Genet Coop Rep 8:15–17

    Google Scholar 

  10. Roberts PA, Thomason IJ (1986) Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Dis 70:547–551

    Article  Google Scholar 

  11. Seah S, Yaghoobi J, Rossi M, Gleason CA, Williamson VM (2004) The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theor Appl Genet 108:1635–1642

    Article  CAS  PubMed  Google Scholar 

  12. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nombela G, Williamson VM, Muñiz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Interact 16:645–649

    Article  CAS  PubMed  Google Scholar 

  14. Casteel CL, Walling LL, Paine TD (2006) Behaviour and biology of the tomato psyllid, Bactericerca cockerelli, in response to the Mi-1.2 gene. Entomol Exp Appl 121:67–72

    Article  CAS  Google Scholar 

  15. Persson L (1974) A modified baermann apparatus for the recovery of infective nematode larvae from herbage and manure. J Vet Med Sci 21(7):483–488

    CAS  Google Scholar 

  16. Taylor AL, Sasser JN (1978) Biology, identification and control of root knot nematode (Meloidogyne species). A Cooperative Publication of North Carolina State University and USAID, p 111

  17. Byrd DW, Kirkpatrick T, Barker KR (1983) An improved technique for cleaning and staining plant tissue for detection of nematodes. J Nematol 15:142–143

    Google Scholar 

  18. Prasanna H, Kashyap SP, Krishna R, Sinha DP, Reddy S, Malathi VG (2015) Marker assisted selection of Ty-2 and Ty-3 carrying tomato lines and their implications in breeding tomato leaf curl disease resistant hybrids. Euphytica. doi:10.1007/s10681-015-1357-8

    PubMed  PubMed Central  Google Scholar 

  19. Ammiraju JSS, Veremis JC, Huang X, Roberts PA, Kaloshian I (2003) The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106:478–484

    Article  CAS  PubMed  Google Scholar 

  20. Seah S, Williamson VM, Garcia BE, Mejía L, Salus MS, Martin CT, Maxwell DP (2007) Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Rep Tomato Genet Coop 57:37–40

    Google Scholar 

  21. Arens P, Mansilla C, Deinum D, Cavellini L, Moretti A, Rolland S, van der Schoot H, Calvache D, Ponz F, Collonnier C, Mathis R, Smilde D, Caranta C, Vosman B (2010) Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theor Appl Genet 120:655–664

    Article  CAS  PubMed  Google Scholar 

  22. The R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.version3.1.2. 31-10-2014

  23. Brenner ED, Lambert KN, Kaloshian I, Williamson VM (1998) Characterization of LeMir, a root-knot nematode-induced gene in tomato with an encoded product secreted from the root. Plant Physiol 118:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fassuliotis G (1979) Plant breeding for root-knot nematode resistance. In: Lamberti F, Taylor CE (eds) Root-knot nematodes (Meloidogyne species): systematics, biology and control. Academic Press, New York, pp 425–453

    Google Scholar 

  25. Marull J, Pinochet J, Felipe A, Cenis L (1994) Resistance verification in Prunus selections to mixtures of thirteen Meloidogyne isolates and resistance mechanisms of a peach-almond hybrid to M. javanica. Fundam Appl Nematol 17:85–92

    Google Scholar 

  26. Stirling GR, Cirami RM (1998) Resistance and tolerance of grape rootstocks to South Australian populations of root-knot nematode. Aust J Exp Agric Husband 24:277–282

    Article  Google Scholar 

  27. Zhou E, Wheeler TA, Starr JL (2000) Root galling and reproduction of Meloidogyne incognita isolates from Texas on resistant cotton genotypes. Suppl J Nematol 32:513–518

    CAS  Google Scholar 

  28. Shrestha S, Kumar R, Behera TK, Sharma HK (2012) Inheritance of resistance to root-knot nematode (Meloidogyne incognita race 1) in tomato (Solanum lycopersicum L.) ‘Pusa 120’. J Hortic Sci Biotechnol 87(3):211–216

    Article  Google Scholar 

  29. Eisenback JD, Triantaphyllou HH (1991) Root-knot nematodes: Meloidogyne species and races. In: Nickle WR (ed) Manual of agricultural nematology. Marcel Dekker, New York, pp 191–274

    Google Scholar 

  30. Dropkin VH, Helgeson JP, Upper CD (1969) The hypersensitive reaction of tomatoes resistant to Meloidogyne incognita; reversal by cytokinins. J Nematol 1:55–61

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Paulson RE, Webster JM (1972) Ultra structure of the hypersensitive reaction in roots of tomato, Lycopersicon esculentum L., to infection by the root-knot nematode, Meloidogyne incognita. Physiol Plant Pathol 2:227–234

    Article  Google Scholar 

  32. Garcia BE, Graham E, Jensen KS, Hanson P, Mejia L, Maxwell DP (2007) Co-dominant SCAR marker for detection of the begomovirus-resistance Ty2 locus derived from Solanum habrochaites in tomato germplasm. Rep Tomato Genet Coop 57:21–24

    Google Scholar 

  33. Jacquet M, Bongiovanni M, Martínez M, Verschave P, Wajnberg E, Castagnone-Sereno P (2005) Variation in resistance to the rot-knot nematode Meloidogyne incognita in tomato genotypes bearing the Mi gene. Plant Pathol 54:93–99

    Article  Google Scholar 

  34. Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P, Jesse T, Wijbrandi J, Simons G, Vos P, Zabel P, Williamson VM (1998) Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol Gen Genet 257:376–385

    Article  CAS  PubMed  Google Scholar 

  35. Williamson VM, Ho JY, Wu FF, Miller N, Kaloshian I (1994) A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor Appl Genet 87:757–763

    Article  CAS  PubMed  Google Scholar 

  36. El Mehrach K, Chouchane SG, Mejia L, Williamson VM, Vidavski F (2005) PCR-based methods for tagging the Mi-1 locus for resistance to root-knot nematode in begomovirus-resistant tomato germplasm. Acta Hortic 695:263–270

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to TGRC, UC Davis, USA for proving seeds of LA 2823, LA 3471, LA1326 and LA 2325 genotypes. The authors also acknowledge the financial support of the Indian Council of Agricultural Research (ICAR), New Delhi for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yerasu Suresh Reddy.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, Y.S., Sellaperumal, C., Prasanna, H.C. et al. Screening of Tomato Genotypes Against Root-Knot Nematode and Validation of Mi 1 Gene Linked Markers. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 65–72 (2018). https://doi.org/10.1007/s40011-016-0731-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-016-0731-1

Keywords

Navigation