Skip to main content
Log in

Inheritance and QTL analysis of chilling and heat requirements for flowering in an interspecific almond x peach (Texas x Earlygold) F2 population

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Blooming in temperate fruit species is triggered by chilling and heat requirements (CR and HR), with a wide range of requirements within the same species. CR for flower bud dormancy release has become a limiting factor for geographical adaptation of fruit trees in warmer regions. The present study investigated the genetic basis of CR and HR to break dormancy and flowering time (FT) in an almond x peach F2 progeny. FT, HR and CR were evaluated over two consecutive years (2015/2016 and 2016/2017). Seven out of the eight identified quantitative trait loci (QTLs) were found in both periods of analysis. They affected eight traits, and included a consistent QTL for breaking dormancy, CR and HR. Two of them, affecting FT and HR for FT (GDHF), colocalized in G1, and the remaining QTLs, affecting chilling and heat requirements, both influenced by dormancy breaking (DB), were located in G6. These results indicate that factors not related to DB affect flowering time in this population. Implications of the results in peach breeding are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alburquerque N, Burgos L, Egea J (2003) Apricot flower bud development and abscission related to chilling, irrigation and type of shoots. Sci Hortic 98:265–276

    Article  Google Scholar 

  • Alburquerque N, Garcia-Montiel F, Carrillo A, Burgos L (2008) Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ Exp Bot 64:162–170

    Article  Google Scholar 

  • Balandier P, Bonhomme M, Rageau R, Capitan F, Parisot E (1993) Leaf bud endodormancy release in peach trees. Evaluation of temperature models in temperate and tropical climates. Agric For Meteorol 67:95–113

    Article  Google Scholar 

  • Benmoussa H, Ghrab M, Ben Mimoun M, Luedeling E (2017) Chilling and heat requirements for local and foreign almond (Prunus dulcis Mill.) cultivars in a warm Mediterranean location based on 30 years of phenology records. Agric For Meteorol 239:34–46

    Article  Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorzar R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4(3):495–507

    Article  Google Scholar 

  • Bielenberg DG, Rauh B, Fan SH, Gasic K, Abbott AG, Reighard GL, Okie WR, Wells CE (2015) Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach Prunus persica (L.) Batsch. Plos One 10(10):e0139406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Byrne DH (2003) Breeding peach and nectarines for mild-winter climate areas: state of the art and future directions. In: Marra FP, Sottile F (eds) First mediterranean peach symposium. Paruzzo Prontostampa, Agrigento, pp 102–112

    Google Scholar 

  • Calle A, Cai L, Iezzoni A, Wünsch A (2020) Genetic dissection of bloom time in low chilling sweet cherry (Prunus avium L.) using a multi-family QTL approach. Front Plant Sci 10:1647

    Article  PubMed  PubMed Central  Google Scholar 

  • Campoy JA, Ruiz D, Egea J, Rees DJG, Celton JM, Martínez-Gómez P (2011) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mole Biol Rep 29:404–410

    Article  CAS  Google Scholar 

  • Campoy JA, Ruiz D, Allderman L, Cook N, Egea J (2012) The fulfilment of chilling requirements and the adaptation of apricot (Prunus armeniaca L.) in warm winter climates: an approach in Murcia (Spain) and the Western Cape (South Africa). Eur J Agron 37:43–55

    Article  Google Scholar 

  • Campoy JA, Ruiz D, Nortes MD, Egea J (2013) Temperature efficiency for dormancy release in apricot varies when applied at different amounts of chill accumulation. Plant Biol 15:28–35

    Article  PubMed  Google Scholar 

  • Castède S, Campoy JA, Quero-Garcia J, Le Dantec L, Lafargue M, Barreneche T, Wenden B, Dirlewanger E (2014) Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements. New Phytol 202:703–715

    Article  PubMed  Google Scholar 

  • Castède S, Campoy JA, Le Dantec L, Quero-Garcia J, Barreneche T, Wenden B, Dirlewanger E (2015) Mapping of candidate genes involved in bud dormancy and flowering time in sweet cherry (Prunus avium). Plos One 10(11):e0143250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Couvillon GA, Erez A (1985) Influence of prolonged exposure to chilling temperatures on bud break and heat requirement for bloom of several fruit species. J Am Soc Hortic Sci 110:47–50

    Google Scholar 

  • Dennis FG (2003) Problems in standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience 38:347–350

    Article  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci 101:9891–9896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Quero-Garcia J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donoso JM, Eduardo I, Picañol R, Batlle I, Howad W, Aranzana MJ, Arús P (2015) High-density mapping suggests cytoplasmic male sterility with two restorer genes in almond × peach progenies. Hortic Res 2:15016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donoso JM, Picañol R, Serra O, Howad W, Alegre S, Arús P, Eduardo I (2016) Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two interspecific almond × peach populations. Mol Breed 36:16

    Article  CAS  Google Scholar 

  • Døving A (2009) Modelling plum (Prunus domestica) yeild in Norway. Eur J Hortic Sci 74:254–259

    Google Scholar 

  • Døving A (2011) Plant science and biotechnology in Norway. Modelling sweet cherry (Prunus avium) fruit yield in Norway. In: Netsby R (ed) Europ J Plant Sci Biotech vol 5 (Special Issue 1), pp 62–66

  • Egea J, Ortega E, Martínez-Gómez P, Dicenta F (2003) Chilling and heat requirements of almond cultivars for flowering. Environ Exp Botany 50:79–85

    Article  Google Scholar 

  • Erez A, Couvillon GA (1987) Characterization of the influence of moderate temperatures on rest completion in peach. J Am Soc Hortic Sci 112:677–680

    Google Scholar 

  • Erez A and Fishmann S (1998) The dynamic model for chilling evaluation in peach buds. In: Proceedings of 4th international peach symposium acta Hort vol 465, pp 507−510

  • Erez A, Fishman S, Linsleynoakes GC (1990) The dynamic model for rest completion in peach buds. Acta Hortic 276:18

    Google Scholar 

  • Erez A, Yablowitz Z, Korcinski R (2000) Temperature and chemical effects on competing sinks in peach bud break, In: Bodson M (ed) Proceedings of the Xxv international horticultural congress, Pt 4: culture techniques with special emphasis on environmental implications chemical, physical and biological means of regulating crop growth in vegetables and fruits, pp 51–58.

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • Felipe AJ (2009) “Felinem”, “Garnem”, and “Monegro” almond × peach hybrid rootstocks. HortScience 44(1):196–197

    Article  Google Scholar 

  • Fishman S, Erez A, Couvillon GA (1987a) The temperature-dependence of dormancy breaking in plants—computer simulation of processes studied under controlled temperatures. J Theor Biol 126:309–321

    Article  Google Scholar 

  • Fishman S, Erez A, Couvillon GA (1987b) The temperature-dependence of dormancy breaking in plants—mathematical analysis of a 2-step model involving a cooperative transition. J Theor Biol 124:473–483

    Article  Google Scholar 

  • Guerriero R, Monteleone P, Viti R (2006) Evaluation of end of dormancy in several apricot cultivars according to different methodological approaches. In: Audergon JM (ed) Proceedings of the Xiith Ishs symposium on apricot culture and decline, vols 1 and 2

  • Hanke M-V, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit—genetic potentials to trigger flowering in fruit trees. Genes Genomes Genom 1:1–20

    Google Scholar 

  • Harrington CA, Gould PJ, St Clair JB (2010) Modeling the effects of winter environment on dormancy release of Douglas-fir. For Ecol Manag 259:798–808

    Article  Google Scholar 

  • Hauagge R, Cummins JN (1991) Genetics of length of dormancy period in malus vegetative buds. J Am Soc Hortic Sci 116:121–126

    Article  Google Scholar 

  • Heide OM (1993) Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88:531–540

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Habu T, Yamane H, Nishiyama S, Kajita K, Sobue T, Kawai T, Numaguchi K, Nakazaki T, Kitajima A, Tao R (2018) Identification of QTLs controlling chilling and heat requirements for dormancy release and bud break in Japanese apricot (Prunus mume). Tree Genet Genom 14:33

    Article  Google Scholar 

  • Kotowski SJ, Bailey CH, Hough LF (1980) Estimate of chilling requirements of apricot selections. Hortscience 15:395–395

    Google Scholar 

  • Li Y, Fang WC, Zhu GR, Cao K, Chen CW, Wang XW, Wang LR (2016) Accumulated chilling hours during endodormancy impact blooming and fruit shape development in peach (Prunus persica L.). J Integr Agric 15:1267–1274

    Article  Google Scholar 

  • Linsley-Noakes GC, Allan P (1994) Comparison of two models for the prediction of rest completion in peaches. Sci Hortic 57(2):107–113

    Article  Google Scholar 

  • Luedeling E, Gassner A (2012) Partial least squares regression for analyzing walnut phenology in California. Agric For Meteorol 158:43–52

    Article  Google Scholar 

  • Meier U, Graf H, Hack H, Hess M, Kennel W, Klose R, Mappes D, Seipp D, Stauss R, Streif J, van den Boom T (1994) Phenological growth stages of pome fruits (Malus domestica Borkh. and Pyrus communis L.), stone fruits (Prunus species), currants (Ribes species) and strawberry (Fragaria × ananassa Duch.). Nachrichtenblatt des Dtsch Pflanzenschutzdienstesv 46:141–153

    Google Scholar 

  • Menzel A, Estrella N, Testka A (2005) Temperature response rates from long-term phenological records. Clim Res 30:21–28

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  • Okie WR, Blackburn B (2011) Increasing chilling reduces heat requirement for floral budbreak in peach. Hortscience 46:245–252

    Article  Google Scholar 

  • Olukolu BA, Trainin T, Fan S, Kole C, Bielenberg DG, Reighard GL, Abbott AG, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828

    Article  CAS  PubMed  Google Scholar 

  • Pawasut A, Fujishige N, Yamane K, Yamaki Y, Honjo H (2004) Relationships between chilling and heat requirement for flowering in ornamental peaches. J Jpn Soc Hortic Sci 73:519–523

    Article  Google Scholar 

  • Pérez FJ, Ormeño NJ, Reynaert B, Rubio S (2008) Use of the dynamic model for the assessment of winter chilling in a temperate and a subtropical climatic zone of Chile. Chil J Agric Res 68:198–206

    Article  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    Article  CAS  PubMed  Google Scholar 

  • Ramirez F, Kallarackal J (2015) The effect of increasing temperature on phenology. In: Ramírez F, Kallarackal J (eds) Responses of fruit trees to golbal climate change. Springer Internatiaonal Publishing, pp 11–13.

  • Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortScience 9:331–332

    Google Scholar 

  • Rivero R, Sønsteby A, Heide OM, Måge F, Remberg SF (2016) Flowering phenology and the interrelations between phenological stages in apple trees (Malus domestica Borkh.) as influenced by the Nordic climate. Acta Agric Scand Sect B Soil Plant Sci 67:278–283

    Google Scholar 

  • Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61:254–263

    Article  Google Scholar 

  • Salazar JA, Ruiz D, Campoy JA, Sánchez-Pérez R, Crisosto CH, Martínez-García PJ, Blenda A, Jung S, Main D, Martínez-Gómez P, Rubio M (2014) Quantitative trait loci (QTL) and mendelian trait loci (MTL) Analysis in prunus: a breeding perspective and beyond. Plant Mol Biol Rep 32:1–18

    Article  Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genom 8:379–389

    Article  Google Scholar 

  • Scorza R, Okie WR (1990) Peaches (Prunus). Acta Hortic 290:177–231

    Google Scholar 

  • Silva C, Garcia-Mas J, Sánchez AM, Arús P, Oliveira M (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach. Theor Appl Genet 110:959–968

    Article  CAS  PubMed  Google Scholar 

  • Tanksley S (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2009) MapQTL 6.0. Software for the mapping of quantitative trait loci in experimental populations. Wageningen: Kyazma, B.V.

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Walther GR (2002) Weakening of climatic constraints with global warming and its consequences for evergreen broad-leaved species. Folia Geobotanica 37:129–139

    Article  Google Scholar 

  • Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544

    Article  CAS  Google Scholar 

  • Weinberger JH (1950) Chilling requirements of peach varieties. Proc Am Soc Hortic Sci 56:122–128

    Google Scholar 

  • Woznicki TL, Heide OM, Sønsteby A, Måge F, Remberg SF (2019) Climate warming enhances flower formation, earliness of blooming and fruit size in plum (Prunus domestica L.) in the cool Nordic environment. Sci Hortic (Amsterdam) 257

  • Zhang J, Taylor C (2011) The dynamic model provides the best description of the chill process on ‘Sirora' pistachio trees in Australia. HortScience 46(3):420–425

    Article  Google Scholar 

  • Zhebentyayeva TN, Fan SH, Chandra A, Bielenberg DG, Reighard GL, Okie WR, Abbott AG (2014) Dissection of chilling requirement and bloom date QTLs in peach using a whole genome sequencing of sibling trees from an F2 mapping population. Tree Genet Genom 10:35–51

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported in part by funding from the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER projects AGL2015-68329-R and RTA2015-00050–00-00, Severo Ochoa Program for Centres of Excellence in R&D 201–2019 SEV-2015–0533) and from the CERCA Programme-Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iban Eduardo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantin, C.M., Wang, XW., Almira, M. et al. Inheritance and QTL analysis of chilling and heat requirements for flowering in an interspecific almond x peach (Texas x Earlygold) F2 population. Euphytica 216, 51 (2020). https://doi.org/10.1007/s10681-020-02588-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02588-9

Keywords

Navigation