Skip to main content
Log in

Quantitative Trait Loci (QTL) and Mendelian Trait Loci (MTL) Analysis in Prunus: a Breeding Perspective and Beyond

  • Review
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Trait loci analysis, a classic procedure in quantitative (quantitative trait loci, QTL) and qualitative (Mendelian trait loci, MTL) genetics, continues to be the most important approach in studies of gene labeling in Prunus species from the Rosaceae family. Since 2011, the number of published Prunus QTLs and MTLs has doubled. With increased genomic resources, such as whole genome sequences and high-density genotyping platforms, trait loci analysis can be more readily converted to markers that can be directly utilized in marker-assisted breeding. To provide this important resource to the community and to integrate it with other genomic, genetic, and breeding data, a global review of the QTLs and MTLs linked to agronomic traits in Prunus has been performed and the data made available in the Genome Database for Rosaceae. We describe detailed information on 760 main QTLs and MTLs linked to a total of 110 agronomic traits related to tree development, pest and disease resistance, flowering, ripening, and fruit and seed quality. Access to these trait loci enables the application of this information in the post-genomic era, characterized by the availability of a high-quality peach reference genome and new high-throughput DNA and RNA analysis technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hort 465:41–49

    CAS  Google Scholar 

  • Adami M, De Franceschi P, Brandi F, Liverani A, Giovannini D, Rosati C, Dondini L, Tartarini S (2013) Identifying a Carotenoid Cleavage Dioxygenase (ssd4) gene controlling Yellow/White fruit flesh color in peach. Plant Mol Biol Rep 31. doi: 10.1007/s11105-013-0628-6

  • Ahmad R, Parfitt DE, Fass J, Ogundiwin E, Dhingra A, Gradziel TM, Lin D, Joshi NA, Martínez-García PJ, Crisosto CH (2011) Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genomics 12:569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aranzana MJ, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Arús P, Testolin R, Abbott A, King GJ, Iezzoni AF (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    CAS  PubMed  Google Scholar 

  • Aranzana MJ, Abassi EK, Howad B, Arús P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11:69

    PubMed Central  PubMed  Google Scholar 

  • Aranzana MJ, Illa E, Howad B, Arús P (2012) A first insight into peach [Prunus persica (L.) Batsch] SNP variability. Tree Genet Genomes 8:1359–1369

    Google Scholar 

  • Arús P, Howad W, Mnejja M (2005) Marker development and marker-assisted selection in temperate fruit trees. In: Tuberosa R, Phillips RL, Gale M (eds) In the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, pp 309–325

    Google Scholar 

  • Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. Plant Breed Rev 27:175–211

    Google Scholar 

  • Arús P, Verde I, Sosinski B, Zhebentyayeva T, Abbott AG (2012) The peach genome. Tree Genet Genomes 8:531–547

    Google Scholar 

  • Asins MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Google Scholar 

  • Baird WV, Estager AS, Wells JK (1994) Estimating nuclear-DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Amer Soc Hort Sci 119:1312–1316

    Google Scholar 

  • Ballester J, Boskovic R, Batlle I, Arús P, Vargas F, de Vicente MC (1998) Location of the self-compatibility gene on the almond linkage map. Plant Breed 117:69–72

    Google Scholar 

  • Ballester J, Socias I, Company R, Arús P, de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120:268–270

    CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (1997) QTL CARTOGRAPHER, reference manual and tutorial for QTL mapping. North Caroline State University, Raleigh

    Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107:467–590

    CAS  PubMed  Google Scholar 

  • Bertin N, Martre P, Genard M, Quillot B, Salon C (2010) Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits. J Exp Bot 61:955–967

    CAS  PubMed  Google Scholar 

  • Bink MCMA, Boer MP, Ter Braak CJF, Jansen J, Voorrips RE, van de Weg WE (2008) Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161:85–96

    Google Scholar 

  • Blaker KB, Chaparro JX, Bechman TG (2013) Identification of QTLs controlling seed dormancy in peach (Prunus persica). Tree Genet Genomes 9:659–668

    Google Scholar 

  • Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Muñoz-Torres M, Baird WV, Abbott AG (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3:341–350

    Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529

    CAS  PubMed  Google Scholar 

  • Boopathi NM (2013) Genetic mapping and marker assisted selection: basics, practice and benefits. Springer, New York, 293 pp

    Google Scholar 

  • Bundock PC, Eliott FG, Ablett G, Benson AD, Casau RE, Aitken KS, Henry JH (2009) Targeted single nucleotide polymosphism (SNP) discovery in a highly polyploidy plant species using 454 pyrosequencing. Plant Biotech J 7:347–354

    CAS  Google Scholar 

  • Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J Heredity 81:68–71

    Google Scholar 

  • Campoy JA, Martínez-Gómez P, Ruiz D, Rees J, Celton JM (2010) Developing microsatellite multiplex and megaplex PCR systems for high throughput characterization of breeding progenies and linkage maps spanning the apricot genome. Plant Mol Biol Rep 28:560–568

    CAS  Google Scholar 

  • Campoy JA, Ruiz D, Egea J, Rees J, Celton JM, Martínez-Gómez P (2011) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat markers. Plant Mol Biol Rep 29:404–410

    CAS  Google Scholar 

  • Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biol Technol 58:79–87

    Google Scholar 

  • Cervellati C, Paetz C, Dondini L, Tartarini S, Bassi D, Shneider B, Masia A (2012) A qNMR approach for bitterness phenotyping and QTL identification in an F1 apricot progeny. J Biotech 150:312–319

    Google Scholar 

  • Chaparro JX, Werner DJ, O`Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

    CAS  PubMed  Google Scholar 

  • Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F, Dirlewanger E, Esmenjaud D (2004) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108:765–773

    CAS  PubMed  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–195

    CAS  Google Scholar 

  • Dhanapal AP, Martínez-García PJ, Gradziel TM, Crisosto CH (2012) First genetic linkage map of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) fruit with SSR and SNP markers. Plant Sci Mol Breed pp: 1–13

  • Dardick C, Callahan A, Scorza R, Staton M, Abbott A (2011) Sequencing and reference assembly of the Prunus domestica (European Plum) genome. Plant & Animal Genome XIX Conference, San Diego, USA, W250

    Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134:943–951

    CAS  PubMed  Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Le Gall O, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Gen 272:680–689

    CAS  Google Scholar 

  • Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44:783–790

    CAS  PubMed  Google Scholar 

  • Dirlewanger E, Bodo C (1994) Molecular genetic mapping of peach. Euphytica 77:101–103

    CAS  Google Scholar 

  • Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach (Prunus persica (L) Batsch) × Prunus davidiana hybrids. Theor Appl Genet 93:909–919

    CAS  PubMed  Google Scholar 

  • Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach (Prunus persica (L.) Batsch) using morphological and molecular markers. Theor Appl Genet 97:888–895

    CAS  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTL controlling fruit quality in peach (Prunus persica (L) Batsch). Theor Appl Genet 98:18–31

    CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arús P, Esmenjaud D (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid—location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838

    CAS  PubMed  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldré F, Cosson P, Howad W, Arús P (2004b) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2006) Development of a second generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3:1–13

    Google Scholar 

  • Dirlewanger E, Cardinet G, Boudehri K, Renaud C, Monllor S, Illa E, Howad W, Arús P, Croset C, Poëssel JL, Maucourt M, Deborde C, Moing A (2009) Detection of QTLs controlling major fruit quality components in peach within the European project ISAFRUIT. Acta Hort 814:533–538

    CAS  Google Scholar 

  • Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phonological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292

    CAS  PubMed  Google Scholar 

  • Dondini L, Lain O, Vendramin V, Rizzo M, Vivoli D, Adami M, Guidarelli M, Gaiotti F, Palmisano F, Bazzoni A, Boscia D, Geuna F, Tataranni S, Negri P, Castellano M, Savino V, Bassi D, Testolin R (2011) Identification of QTL for resistance to plum pox virus strain M and D in Lito and Harcot apricot cultivars. Mol Breed 79:289–299

    Google Scholar 

  • Druka A, Potokina E, Luo Z, Jiang N, Chen X, Kearsy M, Waugh R (2010) Expression quantitative trait loci analysis in plants. Plant Biotech J 8:10–27

    CAS  Google Scholar 

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335

    Google Scholar 

  • Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2013) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes SNP maps. Tree Genet Genomes 9:189–204

    Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: application for crop improvement. Plant Biotech J 8:2–9

    CAS  Google Scholar 

  • Esmenjaud D, Srinivasan C (2012) Molecular breeding. In: Kole C, Abbott AG (eds) Genetics, genomics and breeding of stone fruits. CRC, New York, pp 150–210

    Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodnes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate gene and QTLs for sugar and organic acid content in peach. Theor Appl Genet 105:145–159

    CAS  PubMed  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    PubMed  Google Scholar 

  • Fernández i Martí A, Howad W, Tao R, Alonso JM, Arús P, Socias i Company R (2011) Identification of quantitative trait loci associated with self- compatibility in a Prunus species. Tree Genet Genomes 7:629–639

    Google Scholar 

  • Fernández i Martí A, Font i Forcada C, Socias i Company R (2013) Genetic analysis for physical nut traits in almond. Tree Genet Genomes 9:455–465

    Google Scholar 

  • Font i Forcada C, Fernández i Martí A, Socias i Company R (2012) Mapping quantitative trait loci for kernel composition in almond. BMC Genet 13:47

    CAS  PubMed  Google Scholar 

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    CAS  Google Scholar 

  • Fridman E, Zamir D (2012) Next-generation education in crop genetics. Curr Opinion Plant Biol 15:218–223

    Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    CAS  PubMed  Google Scholar 

  • Gradziel TM, Martínez-Gómez P (2013) Almond breeding, vol 37. In: Janick J (ed) Plant breeding reviews. Wiley-Blackwell, Hoboken, pp 207–259

    Google Scholar 

  • Gradziel TM, Martínez-Gómez P, Dandekar AM (2001) The use of S-allele specific PCR analysis to improve breeding efficiency for self-fertility in almond. HortSci 36:440

    Google Scholar 

  • Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Curr Sci 70:45–54

    CAS  Google Scholar 

  • Horn R, Sajer O, Esmenjau D, Claveri M, Dirlewanger E (2012) Map-based cloning of single traits and quantitative traits. In: Kole C, Abbott AG (eds) Genetics, genomics and breeding of stone fruits. CRC, New York, pp 212–243

    Google Scholar 

  • Houle D, Goviandaraju DR, Omholt S (2010) Phenomics: the next challenge. Nature Rev 11:855–866

    CAS  Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    CAS  PubMed  Google Scholar 

  • Hu ZL, Reecy JM, Wu XL (2012) Design database for quantitative trait loci (QTL) data warehouse, data mining, and meta-analysis. Methods Mol Biol 871:121–144

    CAS  PubMed  Google Scholar 

  • Hurtado MA, Romero C, Vilanova S, Abbott AG, Llácer G, Badenes ML (2002) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.), and mapping of PPV (sharka) resistance. Theor Appl Genet 105:182–191

    CAS  PubMed  Google Scholar 

  • Iezzoni A, Weebadde C, Luby J, Yue CY, Peace CP, Bassil N, McFerson J (2010) RosBREED: enabling marker-assisted breeding in Rosaceae. Acta Hort 859:389–394

    Google Scholar 

  • Illa I, Lambert P, Quilot B, Audergon JM, Dirlewanger E, Howad W, Dondini L, Tartarini S, Lain O, Testolin R, Bassi D, Arús P (2009) Linkage map saturation, construction, and comparison in four populations of Prunus. J Hort Sci Biotech, ISFRUIT Special Issue: 168–175

  • Illa I, Eduardo I, Audergon JM, Barale F, Dirlewanger E, Li X, Moing A, Lambert P, Le Dantec L, Gao Z, Poëssel JL, Pozzi C, Rossini L, Vecchietti A, Arús P, Howad W (2011) Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Mol Breed 28:667–682

    Google Scholar 

  • Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–912

    PubMed  Google Scholar 

  • Jackson SA, Iwata A, Lee SH, Schmutz J, Shoemaker R (2011) Sequencing crop genomes. Approaches and applications. New Phytol 191:915–925

    CAS  PubMed  Google Scholar 

  • Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36:D1034–D1040

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung S, Jiwan D, Cho I, Abbott A, Tomkins J, Main D (2009) Synteny of Prunus and other model plant species. BMC Genomics 10:76

    PubMed Central  PubMed  Google Scholar 

  • Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton JM, Arús P, Shulaev V, Verde I, Morgante M, Rokhsar D, Velasco R, Sargent DJ (2012) Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics 13:129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klagges C, Campoy JA, Quero-García J, Guzmán A, Mansur L, Gratacós E, Silva H, Rosyara UR, Iezzoni A, Meisel LA, Dirlewanger E (2013) Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars. PLoS ONE 7:e54743

    Google Scholar 

  • Koepke T, Schaeffer S, Krishnan V, Jiwan D, Harper A, Whiting M, Oraguzie N, Dhingra A (2012) Rapid gene-based SNP and haplotype marker development in non-model eukaryotes using 3′UTR sequencing. BMC Genomics 13:18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan MA, Korban S (2012) Association mapping in forest trees and fruit crops. J Exp Bot 63:4045–4060

    CAS  PubMed  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513

    CAS  PubMed  Google Scholar 

  • Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, Damsteegt V, Polák J, Krska B, Salava J (2008) A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping Plum pox virus resistance. Tree Genet Genomes 4:481–493

    Google Scholar 

  • Lambert P, Pascal T (2011) Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar “Rubira”. Tree Genet Genomes 7:1057–1068

    Google Scholar 

  • Lambert P, Dicenta F, Rubio M, Audergon JM (2007) QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) ‘Polonais’ × ‘Stark Early Orange’ F1 progeny. Tree Genet Genomes 3:299–309

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an integrative computer package for constructing primary genetic maps of experimental and natural poputlations. Genetics 116:174–181

    Google Scholar 

  • Leida C, Conesa A, Llácer G, Badenes ML, Rios G (2012) Histone modifications and expression of DAM gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80

    CAS  PubMed  Google Scholar 

  • Li L, Zhang X, Zhao H (2012) eQTL. Methods Mol Biol 871:265–279

    PubMed  Google Scholar 

  • Lionneton E, Aubert G, Ochatt S, Merah O (2004) Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theor Appl Genet 109:792–799

    CAS  PubMed  Google Scholar 

  • Marandel G, Pascal T, Candresse T, Decroocq V (2009a) Quantitative resistance to Plum pox virus in Prunus davidiana P1908 linked to components of the eukaryotic translation initiation complex. Plant Pathol 58:425–435

    CAS  Google Scholar 

  • Marandel G, Salava J, Abbott AG, Candresse T, Decroocq V (2009b) Quantitative trait loci meta-analysis of Plum pox virus in apricot (Prunus armeniaca L.): new insights on the organization and the identification of genomic resistance factors. Mol Plant Pathol 10:347–360

    CAS  PubMed  Google Scholar 

  • Martínez-García PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Lurie S, Dandekar A, Gradziel TM, Crisosto CH (2013a) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (P. persica L.). Tree Genet Genomes 9:19–36

    Google Scholar 

  • Martínez-García PJ, Fresnedo-Ramírez J, Parfitt DE, Gradziel TM, Crisosto CH (2013b) Effect prediction of identified SNPs linked to fruit quality and chilling injury in peach [Prunus persica (L.) Batsch]. Plant Mol Biol 81:175–188

    Google Scholar 

  • Martínez-Gómez P, Sánchez-Pérez R, Howad V, Dicenta F, Arús P, Gradziel TM (2007) Almond, Vol 4. In: Kole CR (ed) Genome mapping and molecular breeding. Springer, New York, pp 229–242

    Google Scholar 

  • Martínez-Gómez P, Crisosto C, Bonghi C, Rubio M (2011) New approaches to Prunus transcriptome analysis. Genetica 139:755–769

    PubMed  Google Scholar 

  • Martínez-Gómez P, Sánchez-Pérez R, Rubio M (2012) Clarifying omics concepts, challenges and opportunities for Prunus breeding in the post-genomic era. OMICS. J Integrative Biol 16:268–283

    Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587

    PubMed Central  PubMed  Google Scholar 

  • Olukolu B, Trainin T, Fan S, Kole C, Bielenberg D, Reighard G, Abbott A, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828

    CAS  PubMed  Google Scholar 

  • Peace C, Bassil N, Main D, Ficklin S, Rosyara UR, Stegmeir T, Sebolt A, Gilmore B, Lawley CT, Mockler TC, Bryant DW, Whilelm L, Iezzoni A (2012) Development and evaluation of a genome-wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry. PLoS ONE 7:e48305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pilarová P, Marandel G, Decroocq V, Salava J, Krska B, Abbott AG (2010) Quantitative trait analysis of resistance to Plum pox virus resistance in apricot F1 “Harlayne” × “Vestar”. Tree Genet Genomes 6:467–475

    Google Scholar 

  • Potter D (2012) Basic information on the stone fruit crops. In: Kole C, Abbott AG (eds) Genetics, genomics and breeding of stone fruits. CRC, New York, pp 1–21

    Google Scholar 

  • Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hort 521:233–241

    CAS  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    CAS  PubMed  Google Scholar 

  • Rubio M, Pascal T, Bachellez A, Lambert P (2010) Quantitative trait loci analysis of Plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet Genomes 6:291–304

    Google Scholar 

  • Rajapakse S, Belthoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 90:503–510

    CAS  PubMed  Google Scholar 

  • Ruiz D, Lambert P, Audergon JM, Gouble B, Bureau S, Reich M, Dondini L, Tartarini S, Adami M, Bassi D, Testolin R (2010) Identification of QTLs for fruit quality traits in apricot. Acta Hort 862:587–592

    CAS  Google Scholar 

  • Sajer O, Scorza R, Dardick C, Zhebentyayeva T, Abbott AG, Horn R (2012) Development of sequence-tagged site markers linked to the pillar growth type in peach (Prunus persica). Plant Breed 131:186–192

    CAS  Google Scholar 

  • Salazar JA, Ruiz D, Egea J, Martínez-Gómez P (2013) Inheritance of fruit quality traits in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Rep 31. doi: 10.1007/s11105-013-0625-9

  • Salvi S, Belloti M, Conti S, Frascalori E, Giulani S, Landi P, Maccaferri M, Natoli V, Sanguinetti MC, Sponza G, Talamè V, Tuberosa R (2005) The art and science of cloning QTLs in plants. In: Tuberosa R, Phillips RL, Gale M (eds) In the wake of the double helix: from the gree revolution to the gene revolution. Avenue Media, Bologna, pp 327–345

    Google Scholar 

  • Sánchez-Pérez R, Martínez-Gómez P, Dicenta F, Egea J, Ruiz D (2006) Level and transmission of genetic heterozygosity in apricot, explored by simple sequence repeat markers. Gen Res Crop Evol 53:763–770

    Google Scholar 

  • Sánchez-Pérez R, Howad D, Dicenta F, Arús P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318

    Google Scholar 

  • Sánchez-Pérez R, Howad W, García-Mas J, Arús P, Martínez-Gómez P, Dicenta F (2010) Molecular markers for kernel bitterness in almond. Tree Genet Genomes 6:237–247

    Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379–389

    Google Scholar 

  • Sargent DJ, Jung S, Main D (2012) Comparative genetics and genomics initiatives, vol. 14. In: Kole C, Abbott AG (eds) Genetics, genomics and breeding of stone fruits. CRC, New York, pp 270–291

    Google Scholar 

  • Sauge MH, Lambert P, Pascal T (2012) Co-localisation of host plant resistance QTLs affecting the performance and feeding behavior of the aphid Myzus persicae in the peach tree. Heredity 108:292–301

    PubMed  Google Scholar 

  • Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Gardiner SE, Potter D, Veilleux E (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sicard O, Marandel G, Soriano JM, Lalli DA, Lambert P, Salava J, Badenes ML, Abbott AG, Decroocq V (2008) Flanking the major Plum pox virus resistance locus in apricot with co-dominant markers (SSRs) derived from candidate resistance genes. Tree Genet Genomes 4:359–365

    Google Scholar 

  • Silva C, García-Mas J, Sánchez AM, Arús P, Oliveira MM (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D.A. Webb): the candidate gene approach. Theor Appl Genet 110:959–968

    CAS  PubMed  Google Scholar 

  • Socquet-Juglard D, Christen D, Devènes G, Gessler C, Duffy B, Patocchi A (2013a) Mapping architectural, phonological, and fruit quality QTLs in apricot. Plant Mol Biol Rep 31:387–397

    CAS  Google Scholar 

  • Socquet-Juglard D, Duffy B, Pothier JF, Christen D, Gessler C, Patocchi A (2013b) Identification of major QTL for Xanthomonas arboricola pv. pruni resistance in apricot. Tree Genet Genomes 9:409–421

    Google Scholar 

  • Song LQ, Zhang LB, Zhang JJ, Yu FM, Xiao X (2012) Mapping the key gene of fruit maturity date in peach [Prunus persica (L.) Batsch] by SSR markers. Coll Hort Sci Tech 20:636–641

    CAS  Google Scholar 

  • Sooriyapathirana SS, Khan A, Sebolt AM, Wang D, Bushakra JM, Wang KL, Allan AC, Gardiner SE, Chagné H, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genomes 6:821–832

    Google Scholar 

  • Soriano JM, Vilanova S, Romero C, Llácer G, Badenes M (2005) Characterization and mapping of NBS-LRR resistance gene analogs in apricot (Prunus armeniaca L.). Theor Appl Genet 110:980–989

    CAS  PubMed  Google Scholar 

  • Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring Plum pox virus resistance in two apricot improved linkage maps. Tree Genet Genomes 4:391–402

    Google Scholar 

  • Soriano JM, Domingo ML, Zuriaga E, Romero C, Zhebentyayeva T, Abbott A, Badenes ML (2012) Identification of simple sequence repeat markers tightly linked to Plum pox virus resistance in apricot. Mol Breed 30:1017–1026

    CAS  Google Scholar 

  • Sorkheh K, Malysheva-Otto LV, Wirthensohn MG, Tarkesh-Esfahani S, Martínez-Gómez P (2008) Linkage disequilibrium, genetic association mapping and gene localization in crop plants. Genet Mol Biol 31:805–814

    Google Scholar 

  • Tavassolian I, Rabiei G, Gregory D, Mnejja M, Wirthensohn MG, Hunt PW, Gibson JP, Ford CM, Sedgley M, Wu SB (2010) Construction of an almond linkage map in an Australian population Nonpareil × Lauranne. BMC Genomics 11:551

    PubMed Central  PubMed  Google Scholar 

  • Van Ghelder C, Lafargue B, Dirlewanger E, Oussa A, Voisin R, Polidori J, Kleinhentz M, Esmejaud D (2010) Characterization of the RMja gene for resistance to root-knot nematodes in almond: spectrum, location, and interest for Prunus breeding. Tree Genet Genomes 6:503–511

    Google Scholar 

  • Van Ooijen JW (2006) Join Map 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma, Wageningen

    Google Scholar 

  • Vera-Ruiz EM, Soriano JM, Romero C, Zhebentyayeva T, Teril J, Zuriaga E, Llácer G, Abbott AG, Badenes ML (2011) Narrowing down the apricot Plum pox virus resistance with the peach genome syntenic region. Mol Plant Pathol 12:535–547

    PubMed  Google Scholar 

  • Verde I, Quarta R, Cerdrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592:291–297

    CAS  Google Scholar 

  • Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheleti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Whilelm L, Troggio M, Sosinski B, Aranzana MJ, Arús P, Iezzoni A, Morgante N, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationallly coordinated SNP detection and validation in breeding germplasm. PLoS ONE 7:e35668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattanoro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosininski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Del Fabbro C, Aramini V, Copeti D, González S, Horner D, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarin S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamani F, Schmutz J, Morgante M, Rokhsar D (2013) The high-quality draft of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genetics 45:487–494

    CAS  Google Scholar 

  • Vilanova S, Romero C, Abbott AG, Llácer G, Badenes ML (2003) An apricot F2 progeny linkage map based on SSR and AFLP markers, mapping PPV resistance and self-incompatibility traits. Theor Appl Genet 107:239–247

    CAS  PubMed  Google Scholar 

  • Viruel MA, Madur M, Dirlewanger E, Pascal T, Kervella J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hort 565:79–87

    Google Scholar 

  • Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544

    CAS  Google Scholar 

  • Warburton ML, Becerra-Velasquez VL, Goffreda JC, Bliss FA (1996) Utility of RAPD markers in identifying genetic linkages to genes of economic interest in peach. Theor Appl Genet 93:920–925

    CAS  PubMed  Google Scholar 

  • Wergzyn JL, Main D, Figueroa M, Choi M, Yu J, Neale DB, Jung S, Lee T, Stanton M, Zheng P, Ficklin S, Cho I, Peace K, Evans K, Volk G, Oraguzie N, Chen C, Olmstead M, Gmitter G, Abbott AG (2012) Uniform standards for genome databases in forest and fruit trees. Tree Genet Genomes 8:549–557

    Google Scholar 

  • Wu XL, Hu ZL (2012) Meta-analysis of QTL mapping experiments. Methods Mol Biol 871:145–171

    PubMed  Google Scholar 

  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Apple Genet 125:201–210

    Google Scholar 

  • Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278

    CAS  Google Scholar 

  • Yang N, Reighard G, Ritchie D, Okie W, Gasic K (2013) Mapping quantitative trait loci associated with resistance to bacterial spot (Xanthomonas arboricola pv. Pruni) in peach. Tree Genet Genomes 9:573–586

    Google Scholar 

  • Yoon JH, Liu DC, Song WS, Liu WS, Zhang AM, Li SH (2006) Genetic diversity and ecogeographical phylogenetic relationships among peach and nectarine cultivars based on simple sequence repeat (SSR) markers. J Amer Soc Hort Sci 131:513–521

    CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Google Scholar 

  • Zhang JB, Sebolt AM, Wang D, Bink M, Olmstead JW, Iezzoni AF (2010) Fruit size QTL analysis of an F-1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes 6:25–36

    CAS  Google Scholar 

  • Zhang YM (2012) F2 designs for QTL analysis. Methods Mol Biol 871:17–29

    PubMed  Google Scholar 

  • Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv T, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Wang J, Yin Y, Xu X, Cheng T, Wang J (2012) The genome of Prunus mume. Nat Communications 3:1318

    Google Scholar 

Download references

Acknowledgments

This study has been partially supported by the following projects from the Spanish Ministry of Economy and Competiveness: “Almond breeding” (AGL2010-22197-C02-02), “Apricot breeding” (AGL2010-21903) and “Gene expression analysis of the resistance to Plum pox virus, PPV (Sharka) in apricot by transcriptome deep-sequencing (RNA-Seq)” (AGL2010-16335), and the USDA SCRI funded projects tree fruit Genome Database Resources (Award # 2009-51181-7659) and RosBREED (Award # 2009-51181-05808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dorrie Main or Pedro Martínez-Gómez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(XLSX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, J.A., Ruiz, D., Campoy, J.A. et al. Quantitative Trait Loci (QTL) and Mendelian Trait Loci (MTL) Analysis in Prunus: a Breeding Perspective and Beyond. Plant Mol Biol Rep 32, 1–18 (2014). https://doi.org/10.1007/s11105-013-0643-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0643-7

Keywords

Navigation