Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141. https://doi.org/10.1016/j.pbi.2005.01.001
CAS
Article
PubMed
Google Scholar
Barret P, Brinkmann M, Beckert M (2008) A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. Theor Appl Genet 117:581–594. https://doi.org/10.1007/s00122-008-0803-6
CAS
Article
PubMed
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308
CAS
Article
PubMed
Google Scholar
Cai Z, Xu G, Jun R, Dai Y, Yu M, Li S et al (2017) High spontaneous male-fertility-restorer frequency in a maize recurrent selection experiment. Maize Genet Coop News1 91:1–10
Google Scholar
Chaikam V (2012) In vivo maternal haploid induction in maize. In: Prasanna BM, Chaikam V, Mahuku G (eds) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, D.F, pp 14–19
Google Scholar
Chaikam V, Mahuku G (2012) Chromosome doubling of maternal haploids. In: Prasanna BM, Chaikam V, Mahuku G (eds) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, D.F, pp 24–29
Google Scholar
Chaikam V, Nair SK, Babu R, Martinez L, Tejomurtula J, Boddupalli PM (2015) Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor Appl Genet 128:159–171. https://doi.org/10.1007/s00122-014-2419-3
CAS
Article
PubMed
Google Scholar
Chaikam V, Martinez L, Melchinger AE, Schipprack W, Boddupalli PM (2016) Development and validation of red root marker-based haploid inducers in maize. Crop Sci 56:1678–1688. https://doi.org/10.2135/cropsci2015.10.0653
CAS
Article
Google Scholar
Chalyk ST (1994) Properties of maternal haploid maize plants and potential application to maize breeding. Euphytica 79:13–18. https://doi.org/10.1007/BF00023571
Article
Google Scholar
Chalyk ST (2000) Obtaining fertile pollen in maize maternal haploids. Maize Genet Coop Newsl 74:17–18
Google Scholar
Chase SS (1949) Spontaneous doubling of the chromosome complement in monoploid sporophytes of maize. Proc Iowa Acad Sci 56:113–115
Google Scholar
Chase SS, Nanda DK (1965) Screening for monoploids of maize by use of a purple embryo marker. Maize Genet Coop News Lett 39:59–60
Google Scholar
CIMMYT (2001) Laboratory protocols: CIMMYT applied molecular genetics laboratory protocols. CIMMYT, Mexico, D.F.
Google Scholar
Dekkers JCM (2007) Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breed Genet 124(6):331–341. https://doi.org/10.1111/j.1439-0388.2007.00701.x
CAS
Article
PubMed
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. https://doi.org/10.1371/journal.pone.0019379
CAS
Article
PubMed
PubMed Central
Google Scholar
Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255
Article
Google Scholar
Finkelstein Y, Aks SE, Hutson JR, Juurlink DN, Nguyen P, Dubnov-Raz G et al (2010) Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol 48:407–414
CAS
Article
Google Scholar
Gayen P, Sarkar KR (1995) Cytomixis in monoploids. Maize Genet Coop Newsl 69:107
Google Scholar
Gayen P, Sarkar KR (1996) Cytomixis in maize haploids. Indian J Genet Plant Breed 56:79–85
Google Scholar
Gayen P, Madan JK, Kumar R, Sarkar KR (1994) Chromosome doubling in haploids through colchicine. Maize Genet Coop Newsl 68:65
Google Scholar
Geiger HH, Schönleben M (2011) Incidence of male fertility in haploid elite dent maize germplasm. Maize Genet Coop Newsl 85:22–32
Google Scholar
Geiger HH, Braun MD, Gordillo GA, Koch S, Jesse J, Krutzfeldt BAE (2006) Variation for female fertility among haploid maize lines. Maize Genet Coop Newsl 80:28
Google Scholar
Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q et al (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9:e90346
Article
Google Scholar
Kato A, Geiger HH (2002) Chromosome doubling of haploid maize seedlings using nitrous oxide gas at the flower primordial stage. Plant Breed 121:370–377
Article
Google Scholar
Kleiber D, Prigge V, Melchinger AE, Burkard F, San Vicente F, Palomino G et al (2012) Haploid fertility in temperate and tropical maize germplasm. Crop Sci 52:623–630
Article
Google Scholar
Levan A (1938) The effect of colchicine on root mitoses in Allium. Hereditas 24:471–486
Article
Google Scholar
Liu Z, Wang Y, Ren J, Mei M, Frei UK, Trampe B et al (2016) Maize doubled haploids. Plant Breed Rev 40:123–166
Article
Google Scholar
Liu B, De Storme N, Geelen D (2018) Cold-induced male meiotic restitution in Arabidopsis thaliana is not mediated by GA-DELLA signalling. Front Plant Sci 9:91
Article
Google Scholar
Ma H, Li G, Würschum T, Zhang Y, Zheng D, Yang X et al (2018) Genome-wide association study of haploid male fertility in maize (Zea mays L.). Front Plant Sci 9:974
Article
Google Scholar
Mahuku G (2012) Putative DH seedlings: from the lab to the field. In: Prasanna BM, Chaikam V, Mahuku G (eds) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, D.F, pp 30–38
Google Scholar
Mason AS, Pires JC (2015) Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends Genet 31:5–10
CAS
Article
Google Scholar
Melchinger AE, Schipprack W, Würschum T, Chen S, Technow F (2013) Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize. Sci Rep 3:2129. https://doi.org/10.1038/srep02129
Article
PubMed
PubMed Central
Google Scholar
Melchinger AE, Schipprack W, Friedrich UH, Mirdita V (2014) In vivo haploid induction in maize: identification of haploid seeds by their oil content. Crop Sci 54:1497–1504. https://doi.org/10.2135/cropsci2013.12.0851
Article
Google Scholar
Melchinger AE, Molenaar W, Mirdita V, Schipprack W (2016) Colchicine alternatives for chromosome doubling in maize haploids for doubled haploid production. Crop Sci 56:1–11
Article
Google Scholar
Molenaar WS, Schipprack W, Melchinger AE (2018) Nitrous oxide-induced chromosome doubling of maize haploids. Crop Sci 58:650–659
Article
Google Scholar
Prasanna BM (2012) Doubled Haploid technology in maize breeding:an overview. In: Prasanna BM, Chaikam V, Mahuku G (eds) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, D.F, pp 1–8
Google Scholar
Prigge V, Melchinger AE (2012) Production of haploids and doubled haploids in maize. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols. Springer, Dordrecht, pp 161–172
Chapter
Google Scholar
Prigge V, Xu X, Li L, Babu R, Chen S, Atlin GN et al (2012) New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190:781–793. https://doi.org/10.1534/genetics.111.133066
CAS
Article
PubMed
PubMed Central
Google Scholar
R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Austria
Google Scholar
R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Austria
Google Scholar
Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J et al (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci 98:11479–11484. https://doi.org/10.1073/pnas.201394398
CAS
Article
PubMed
Google Scholar
Ren J, Wu P, Tian X, Lübberstedt T, Chen S (2017) QTL mapping for haploid male fertility by a segregation distortion method and fine mapping of a key QTL qhmf4 in maize. Theor Appl Genet 130:1349–1359. https://doi.org/10.1007/s00122-017-2892-6
CAS
Article
PubMed
Google Scholar
Sackett DL, Varma JK (1993) Molecular mechanism of colchicine action: induced local unfolding of beta.-tubulin. Biochemistry 32:13560–13565
CAS
Article
Google Scholar
Shamina NV, Shatskaya OA (2011) Two novel meiotic restitution mechanisms in haploid maize (Zea mays L.). Russ J Gene 47:438
CAS
Article
Google Scholar
Taylor EW (1965) The mechanism of colchicine inhibition of mitosis. J Cell Biol 25:145–160
CAS
Article
Google Scholar
Wang X, Cai X, Xu C, Wang Q, Dai S (2016) Drought-responsive mechanisms in plant leaves revealed by proteomics. Int J Mol Sci 17:1706
Article
Google Scholar
Wu P, Ren J, Tian X, Lübberstedt T, Li W, Li G et al (2017) New insights into the genetics of haploid male fertility in maize. Crop Sci 57:637–647. https://doi.org/10.2135/cropsci2016.01.0017
Article
Google Scholar
Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X et al (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68:2641–2666. https://doi.org/10.1093/jxb/erx135
CAS
Article
PubMed
Google Scholar
Yang J, Qu Y, Chen Q, Tang J, Lübberstedt T et al (2019) Genetic dissection of haploid male fertility in maize (Zea mays L.). Plant Breed 138:258–265. https://doi.org/10.1111/pbr.12688
CAS
Article
Google Scholar
Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203. https://doi.org/10.1038/ng1702
CAS
Article
PubMed
Google Scholar
Zabirova ER, Shatskaya OA, Shcherbak VS (1993) Line 613/2 as a source of a high frequency of spontaneous diploidization in corn. Maize Genet Coop Newsl 67:67
Google Scholar
Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355. https://doi.org/10.1038/ng.546
CAS
Article
PubMed
PubMed Central
Google Scholar