Skip to main content
Log in

QTL mapping for haploid male fertility by a segregation distortion method and fine mapping of a key QTL qhmf4 in maize

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Four QTL related to haploid male fertility were detected by a segregation distortion method and the key QTL qhmf4 was fine mapped to an interval of ~800 kb.

Abstract

Doubled haploid (DH) technology enables rapid development of homozygous lines in maize breeding programs. However, haploid genome doubling is a bottleneck for the commercialization of DH technology and is limited by haploid male fertility (HMF). This is the first study reporting the quantitative trait locus (QTL) analysis of HMF in maize. Four QTL, qhmf1, qhmf2, qhmf3, and qhmf4, controlling HMF have been identified by segregation distortion (SD) loci detection in the selected haploid population derived from ‘Yu87-1/Zheng58’. Three loci, qhmf1, qhmf2, and qhmf4, were also detected in the selected haploid population derived from ‘4F1/Zheng58’. The QTL qhmf4 showed the strongest SD in both haploid populations. Based on the sequence information of ‘Yu87-1’ and ‘Zheng58’, thirteen markers being polymorphic between the two lines were developed to saturate the qhmf4 region. A total of 8168 H1BC2 (haploid backcross generation) plants produced from ‘Yu87-1’ and ‘Zheng58’ were screened for recombinants. All the 48 recombinants were backcrossed to ‘Zheng58’ to develop H1BC3 progeny. The heterozygous H1BC3 individuals were crossed with CAU5 to induce haploids. In each H1BC3 progeny, haploids were genotyped and evaluated for anther emergence score (AES). Significant (or no significant) difference (P < 0.05) between haploids with or without ‘Yu87-1’ donor segment indicated presence or absence of qhmf4 in the donor segment. The analysis of the 48 recombinants narrowed the qhmf4 locus down to an ~800 kb interval flanked by markers IND166 and IND1668.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barret P, Brinkmann M, Beckert M (2008) A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. Theor Appl Genet 117:581–594

    Article  CAS  PubMed  Google Scholar 

  • Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D (2004) A microsatellite map of white clover (Trifolium repens L.). Theor Appl Genet 109:596–608

    Article  CAS  PubMed  Google Scholar 

  • Chalyk ST (1994) Properties of maternal haploid maize plants and potential application to maize breeding. Euphytica 79:13–18

    Article  Google Scholar 

  • Chang MT, Coe-Jr EH (2009) Doubled haploids. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Springer Berlin Heidelberg, pp. 127–142

  • Chase SS (1952) Selection for parthenogenesis and monoploid fertility in maize. Genetics 37:573–574

    Google Scholar 

  • Cifuentes M, Rivard M, Pereira L, Chelysheva L, Mercier R (2013) Haploid meiosis in Arabidopsis: double-strand breaks are formed and repaired but without synapsis and crossovers. PLoS One 8:e72431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382

    Article  Google Scholar 

  • Cui Y, Zhang F, Xu J, Li Z, Xu S (2015) Mapping quantitative trait loci in selected breeding populations: a segregation distortion approach. Heredity 115:538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darvasi A, Soller M (1992) Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor Appl Genet 85:353–359

    CAS  PubMed  Google Scholar 

  • Dong X, Xu X, Miao J, Li L, Zhang D, Mi X, Liu C, Tian X, Melchinger AE, Chen S (2013) Fine mapping of qhir1 influencing in vivo haploid induction in maize. Theor Appl Genet 126:1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Xu X, Li L, Liu C, Tian X, Li W, Chen S (2014) Marker-assisted selection and evaluation of high oil in vivo haploid inducers in maize. Mol Breed 34:1147–1158

    Article  CAS  Google Scholar 

  • Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R (2015) Haploids: Constraints and opportunities in plant breeding. Biotechnol Adv 33:812–829

    Article  PubMed  Google Scholar 

  • Eder J, Chalyk S (2002) In vivo haploid induction in maize. Theor Appl Genet 104:703–708

    Article  CAS  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Addison Wesley Longman, Harlow

    Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Valè G (2005) Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult 82:317–342

    Article  CAS  Google Scholar 

  • Geiger HH (2009) Doubled haploids. In: Bennetzen JL, Hake S (eds) Maize handbook. Springer, New York, pp 641–657

    Chapter  Google Scholar 

  • Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485–499

  • Geiger HH, Schönleben M (2011) Incidence of male fertility in haploid elite dent maize germplasm. Maize Genet Coop Newsl 85:22–32

  • Geiger HH, Braun MD, Gordillo GA, Koch S, Jesse J, Krutzfeldt BAE (2006) Variation for female fertility among haploid maize lines. Maize Genet Coop Newsl 80:28–30

  • Golubovskaya IN, Hamant O, Timofejeva L, Wang CJR, Braun D, Meeley R, Cande WZ (2006) Alleles of afd1 dissect REC8 functions during meiotic prophase I. J Cell Sci 119:3306–3315

    Article  CAS  PubMed  Google Scholar 

  • Hallauer AR, Carena MJ, Miranda-Filho JB (2010) Quantitative genetics in maize breeding. Springer, New York

    Google Scholar 

  • Han X, Tang Q, Cao M, Rong T (2006) Study on identifying methods of maize haploids induced by Stock 6. Maize Sci 14:64–66

  • Häntzschel KR, Weber R (2010) Blockage of mitosis in maize root tips using colchicine-alternatives. Protoplasma 241 (1-4):99–104

  • Hermisson J, Wagner GP (2004) The population genetic theory of hidden variation and genetic robustness. Genetics 168:2271–2284

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen CJ (1974) Chromosome doubling techniques in haploids. In: Kasha KJ (ed) Haploids in higher plants, advances and potential, 1st edn. University of Guelph, Guelph, pp 153–190

    Google Scholar 

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature. doi:10.1038/nature20827

    PubMed  Google Scholar 

  • Kitamura S, Akutsu M, Okazaki K (2009) Mechanism of action of nitrous oxide gas applied as a polyploidizing agent during meiosis in lilies. Sex Plant Reprod 22:9–14

    Article  CAS  PubMed  Google Scholar 

  • Kleiber D, Prigge V, Melchinger AE, Burkard F, San Vicente F, Palomino G, Gordillo GA (2012) Haploid fertility in temperate and tropical maize germplasm. Crop Sci 52:623–630

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li ZK, Fu BY, Gao YM, Xu JL, Ali J, Lafitte HR, Jiang YZ, Domingo-Rey J, Vijayakumar CHM, Maghirang R, Zheng TQ, Zhu LH (2005) Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol 59:33–52

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xu XW, Jin WW, Chen SJ (2009) Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta 230:367–376

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Song T (2000) Fertility spontaneously restoring of inflorescence and chromosome doubling by chemical treatment in maize haploid. Acta Agron Sin 26:947–952

    Google Scholar 

  • Liu J, Guo T, Yang P, Wang H, Liu L, Lu Z, Xu X, Hu J, Huang Q, Chen S (2012) Development of automatic nuclear magnetic resonance screening system for haploid kernels in maize. Trans Chin Soc Agric Eng 28:233–236

  • Liu C, Li W, Zhong Y, Dong X, Hu H, Tian X, Wang L, Chen B, Chen C, Melchinger AE, Chen S (2015) Fine mapping of qhir8 affecting in vivo haploid induction in maize. Theor Appl Genet 128:2507–2515

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998). Genetics and analysis of quantitative traits. Sunderland, MA

  • Melchinger AE, Schipprack W, Würschum T, Chen S, Technow F (2013) Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize. Sci Rep 3:1–5

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda DK, Chase SS (1966) An embryo marker for detecting monoploids of maize (Zea mays L.). Crop Sci 6:213–215

    Article  Google Scholar 

  • Navabi A, Mather D, Bernier J, Spaner D, Atlin GN (2009) QTL detection with bidirectional and unidirectional selective genotyping: marker-based and trait-based analyses. Theor Appl Genet 118:347–358

    Article  PubMed  Google Scholar 

  • Prasanna BM, Chaikam V, Mahuku G (2012) Doubled haploid (DH) technology in maize breeding: an overview. Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, 1–8

  • Prigge V, Sánchez C, Dhillon BS, Schipprack W, Araus JL, Bänziger M, Melchinger AE (2011) Doubled haploids in tropical maize: I. effects of inducers and source germplasm on in vivo haploid induction rates. Crop Sci 51:1498–1506

    Article  Google Scholar 

  • Prigge V, Xu XW, Li L, Babu R, Chen SJ, Atlin GN, Melchinger AE (2012) New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190:781–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röber FK, Gordillo GA, Geiger HH (2005) In vivo haploid induction in maize: performance of new inducers and significance for doubled haploid lines in hybrid breeding. Maydica 50:275–283

  • Rotarenco V, Dicu G, Fuia S (2010) New inducers of maternal haploids in maize. Maize Genet Coop Newsl 84:21–22

  • Sandler L, Hiraizumi Y, Sandler I (1959) Meiotic drive in natural populations of Drosophila melanogaster. I. The cytogenetic basis of segregation-distortion. Genetics 44(2):233–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt W (2003) Hybrid maize breeding at KWS SAAT AG (in German). In: Proceedings of the Annual Meeting of the Austrian Seed Association, Gumpenstein, 25–27 November 2003, pp 1–6

  • Seitz G (2005) The use of doubled haploids in corn breeding. In: Proceedings of the 41st Annual Illinois Corn Breeders’ School 2005, University of Illinois, Urbana–Champaign, 7–8 March 2005, pp 1–7

    Google Scholar 

  • Smith JSC, Hussain T, Jones ES, Graham G, Podlich D, Wall S, Williams M (2008) Use of doubled haploids in maize breeding: implications for intellectual property protection and genetic diversity in hybrid crops. Mol Breed 22:51–59

    Article  Google Scholar 

  • Sugihara N, Higashigawa T, Aramoto D, Kato A (2013) Haploid plants carrying a sodium azide-induced mutation (fdr1) produce fertile pollen grains due to first division restitution (FDR) in maize (Zea mays L.). Theor Appl Genet 126:2931–2941

    Article  PubMed  Google Scholar 

  • Testillano P, Georgiev S, Mogensen HL, Dumas C, Risueno MC, MatthysRochon E (2004) Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis. Chromosoma 112:342–349

    Article  CAS  PubMed  Google Scholar 

  • Vanous AE (2011) Optimization of doubled haploid production in maize (Zea mays L.). Dissertation, Iowa state University

  • Venuprasad R, Bool ME, Dalid CO, Bernier J, Kumar A, Atlin GN (2009) Genetic loci responding to two cycles of divergent selection for grain yield under drought stress in a rice breeding population. Euphytica 167:261–269

    Article  CAS  Google Scholar 

  • Wan Y, Petolino JF, Widholm JM (1989) Efficient production of doubled haploid plants through colchicine treatment of anther-derived maize callus. Theor Appl Genet 77:889–892

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu J, Xu X, Huang QM, Chen SS, Yang PQ, Chen SJ, Song YQ (2016) Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn) by Measurement of Oil Content. PloS one 11:e0159444

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei J, Chen M (2006) Primary study on the natural fertility of maize haploids. Maize Sci 14:24–26

  • Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X (2011) Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One 6:e29229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu P, Ren J, Li L, Chen S (2014) Early spontaneous diploidization of maternal maize haploids generated by in vivo haploid induction. Euphytica 200:127–138

    Article  Google Scholar 

  • Wu P, Ren J, Tian X, Lübberstedt T, Li W, Li G, Li X, Chen J (2017) New Insights into the Genetics of Haploid Male Fertility in Maize. Crop Sci. doi:10.2135/cropsci2016.01.0017

    Google Scholar 

  • Xu X, Li L, Dong X, Jin W, Melchinger AE, Chen SJ (2013) Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. J Exp Bot 64:1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Yin GM, Guo YL, Zhang DF, Chen SJ, Xu ML (2010) A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet 121:673–687

    Article  PubMed  Google Scholar 

  • Zhan H, Xu S (2011) Generalized linear mixed model for segregation distortion analysis. BMC Genet 12:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Liu Y, Guo Y, Yang Q, Ye J, Chen S, Xu M (2012) Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet 124:585–596

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Ma X, Gao Y, Hao X, Li Z (2014) Genome-wide response to selection and genetic basis of cold tolerance in rice (Oryza sativa L.). BMC Genet 15:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Tang Z, Hou J, Hu N, Yin T (2015) Genetic map construction and detection of genetic loci underlying segregation distortion in an intraspecific cross of Populus deltoides. PloS one 10:e0126077

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Lai for providing the sequence information of ‘Yu87-1’ and ‘Zheng58’. This work was supported by funds from the National Key Research and Development Plan (2016YFD0101200), the National Natural Science Foundation of China (31560392), the National Maize Industrial Technology System (CARS-02-09), and Chinese Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojiang Chen.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Communicated by Chris Carolin Schön.

J. Ren and P. Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 522 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Wu, P., Tian, X. et al. QTL mapping for haploid male fertility by a segregation distortion method and fine mapping of a key QTL qhmf4 in maize. Theor Appl Genet 130, 1349–1359 (2017). https://doi.org/10.1007/s00122-017-2892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2892-6

Keywords

Navigation