Skip to main content
Log in

Flowering time regulation in perennial ryegrass

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Flowering in perennial ryegrass (Lolium perenne L.) is induced by a period of short days and low temperatures (vernalisation), followed by long-day photoperiod conditions. Genetic linkage mapping and association genetics studies have collectively identified 36 quantitative trait loci for flowering time which were distributed across all seven linkage groups of perennial ryegrass. Close to 40 genes (or putative orthologues/homologues of genes known from other species) for flowering time regulation have been identified, including central integrators and genes involved in four pathways (vernalisation, photoperiod, gibberellin, and autonomous). The structure and function of these predicted genes remains to be characterised. Although the photoperiod pathway is conserved in comparison to that of other temperate grasses, the vernalisation pathway appears to differ, due to absence of an orthologue of the cereal VRN2 gene. Although putative components from the autonomous pathway were identified, their target is unclear. No counterparts of genes from two other pathways (ageing and ambient temperature) have so far been reported. Given that c. 200 genes for flowering time regulation have been described in the model plant species Arabidopsis thaliana (L.) Heynh., additional genes may be identified from ryegrasses through comparative genomics approaches in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aamlid TS, Heide OM, Boelt B (2000) Primary and secondary induction requirements for flowering of contrasting European varieties of Lolium perenne. Ann Bot 86:1087–1095

    Article  Google Scholar 

  • Andersen JR, Jensen LB, Asp T, Lübberstedt T (2006) Vernalization response in perennial ryegrass (Lolium perenne L.) involves orthologues of diploid wheat (Triticum monococcum) VRN1 and rice (Oryza sativa) Hd1. Plant Mol Biol 60:481–494

    Article  CAS  PubMed  Google Scholar 

  • Armstead IP, Turner LB, Farrell M, Skøt L, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO (2004) Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108:822–828

    Article  CAS  PubMed  Google Scholar 

  • Armstead IP, Skøt L, Turner LB, Skøt K, Donnison IS, Humphreys MO, King IP (2005) Identification of perennial ryegrass (Lolium perenne (L.)) and meadow fescue (Festuca pratensis (Huds.)) candidate orthologous sequences to the rice Hd1 (Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. New Phytol 167:239–247

    Article  CAS  PubMed  Google Scholar 

  • Armstead IP, Turner LB, Marshall AH, Humphreys MO, King IP, Thorogood D (2008) Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative trait loci analysis and comparative genetics. New Phytol 178:559–571

    Article  CAS  PubMed  Google Scholar 

  • Arojju SK, Barth S, Milbourne D, Conaghan P, Velmurugan J, Hodkinson TR, Byrne SL (2016) Markers associated with heading and aftermath heading in perennial ryegrass full-sib families. BMC Plant Biol 16:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Asp T, Byrne S, Gundlach H, Bruggmann R, Mayer KF, Andersen JR, Xu M, Greve M, Lenk I, Lübberstedt T (2011) Comparative sequence analysis of VRN1 alleles of Lolium perenne with the co-linear regions in barley, wheat, and rice. Mol Genet Genomics 286:433–447

    Article  CAS  PubMed  Google Scholar 

  • Barre P, Moreau L, Mi F, Turner L, Gastal F, Julier B, Ghesquière M (2009) Quantitative trait loci for leaf length in perennial ryegrass (Lolium perenne L.). Grass Forage Sci 64:310–321

    Article  CAS  Google Scholar 

  • Blümel M, Dally N, Jung C (2015) Flowering time regulation in crops—what did we learn from Arabidopsis? Curr Opin Biotechnol 32:121–129

    Article  PubMed  Google Scholar 

  • Brown RN (2009) Positional relationships between flowering QTL and photoperiod and vernalization response genes in an interspecific Lolium population. Direct Submission to NCBI. https://www.ncbi.nlm.nih.gov/nuccore/GQ258851. Accessed 1 February 2017

  • Byrne S, Guiney E, Barth S, Donnison I, Mur LAJ, Milbourne D (2009a) Identification of coincident QTL for days to heading, spike length and spikelets per spike in Lolium perenne L. Euphytica 166:61–70

    Article  Google Scholar 

  • Byrne SL, Guiney E, Donnison IS, Mur LAJ, Milbourne D, Barth S (2009b) Identification of genes involved in the floral transition at the shoot apical meristem of Lolium perenne L. by use of suppression subtractive hybridisation. Plant Growth Regul 59:215–225

    Article  CAS  Google Scholar 

  • Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, Mayer K, Campbell JD, Czaban A, Hentrup S, Panitz F, Bendixen C, Hedegaard J, Caccamo M, Asp T (2015) A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J 84:816–826

    Article  CAS  PubMed  Google Scholar 

  • Ciannamea S, Busscher-lange J, de Folter S, Angenent GC, Immink RGH (2006a) Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach. Plant Cell Physiol 47:481–492

    Article  CAS  PubMed  Google Scholar 

  • Ciannamea S, Kaufmann K, Frau M, Tonaco IA, Petersen K, Nielsen KK, Angenent GC, Immink RGH (2006b) Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne. J Exp Bot 57:3419–3431

    Article  CAS  PubMed  Google Scholar 

  • Ciannamea S, Jensen CS, Agerskov H, Petersen K, Lenk I, Didion T, Immink RGH, Angenent GC, Nielsen KK (2007) A new member of the LIR gene family form perennial ryegrass is cold-responsive, and promotes vegetative growth in Arabidopsis. Plant Sci 172:221–227

    Article  CAS  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    Article  CAS  PubMed  Google Scholar 

  • Colasanti J, Coneva V (2009) Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiol 149:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng W, Casao MC, Wang P, Sato K, Hayes PM, Finnegan EJ, Trevaskis B (2015) Direct links between the vernalization response and other key traits of cereal crops. Nat Commun 6:5882

    Article  PubMed  Google Scholar 

  • Ergon Å, Hamland H, Rognli OA (2013) Differential expression of VRN1 and other MADS-box genes in Festuca pratensis selections with different vernalization requirements. Biol Planta 57:245–254

    Article  CAS  Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fè D, Cericola F, Byrne S, Lenk I, Ashraf BH, Pedersen MG, Roulund N, Asp T, Janss L, Jensen CS, Jensen J (2015) Genomic dissection and prediction of heading date in perennial ryegrass. BMC Genomics 16:921

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiil A, Lenk I, Petersen K, Jensen CS, Nielsen KK, Schejbel B, Andersen JR, Lübberstedt T (2011) Nucleotide diversity and linkage disequilibrium of nine genes with putative effects on flowering time in perennial ryegrass (Lolium perenne L.). Plant Sci 180:228–237

    Article  CAS  PubMed  Google Scholar 

  • Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550. doi:10.1016/jcell201004024

    Article  PubMed  Google Scholar 

  • Gagic M (2007) Flowering in ryegrass and conservation of the photoperiodic response. Dissertation. The University of Auckland

  • Gagic M, Faville M, Kardailsky I, Putterill J (2015) Comparative genomics and functional characterisation of the GIGANTEA gene from the temperate forage perennial ryegrass Lolium perenne. Plant Mol Biol Rep 33:1098–1106. doi:10.1007/s11105-014-0820-3

    Article  CAS  Google Scholar 

  • Gocal GFW, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001) Evolution of floral meristem identity genes analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol 125:1788–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanano S, Goto K (2011) Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23:3172–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heide OM (1994) Control of flowering and reproduction in temperate grasses. New Phytol 128:347–362

    Article  CAS  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS ONE 5:e10065

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen CS, Salchert K, Nielsen KK (2001) A terminal flower1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125:1517–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen CS, Salchert K, Gao C, Andersen CH, Didion T, Nielsen KK (2004) Floral inhibition in red fescue (Festuca rubra L.) through expression of a heterologous flowering repressor from Lolium. Mol Breed 13:37–48

    Article  CAS  Google Scholar 

  • Jensen LB, Andersen JR, Frei U, Xing YZ, Taylor C, Holm PB, Lübberstedt TL (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536

    Article  CAS  PubMed  Google Scholar 

  • Kane NA, Agharbaoui Z, Diallo AO, Adam H, Tominaga Y, Ouellet F, Sarhan F (2007) TaVRT2 represses transcription of the wheat vernalization gene TaVRN1. Plant J 51:670–680

    Article  CAS  PubMed  Google Scholar 

  • Kemp DR, Eagles CF, Humphreys MO (1989) Leaf growth and apex development of perennial ryegrass during winter and spring. Ann Bot 63:349–355

    Article  Google Scholar 

  • King RW, Evans LT (2003) Gibberellins and flowering of grasses and cereals: prizing open the lid of the florigen black box. Annu Rev Plant Biol 54:307–328

    Article  CAS  PubMed  Google Scholar 

  • King J, Thorogood D, Edwards KJ, Armstead IP, Roberts L, Skøt K, Hanley Z, King IP (2008) Development of a genomic microsatellite library in perennial ryegrass (Lolium perenne) and its use in trait mapping. Ann Bot 101:845–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  CAS  PubMed  Google Scholar 

  • Laidlaw AS (2004) Effect of heading date of perennial ryegrass cultivars on tillering and tiller development in spring and summer. Grass Forage Sci 59:240–249

    Article  Google Scholar 

  • Laidlaw AS (2005) The relationship between tiller appearance in spring and contribution to dry-matter yield in perennial ryegrass (Lolium perenne L.) cultivars differing in heading date. Grass Forage Sci 60:200–209

    Article  Google Scholar 

  • Laurie DA (1997) Comparative genetics of flowering time. Plant Mol Biol 35:167–177

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analysis of flowering time gene OsMADS50, the putative SUPPRESSOR OF OVER EXPERSSION OF CO1 and AGAMOUS LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38:754–764

    Article  CAS  PubMed  Google Scholar 

  • Macmillan CP, Blundell CA, King RW (2005) Flowering of the grass Lolium perenne Effects of vernalization and long days on gibberellin biosynthesis and signalling. Plant Physiol 138:1794–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin J, Storgaard M, Andersen CH, Nielsen KK (2004) Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog. Plant Mol Biol 56:159–169

    Article  CAS  PubMed  Google Scholar 

  • Mutasa-Göttgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60:1979–1989

    Article  PubMed  Google Scholar 

  • Paina C, Byrne SL, Domnisoru C, Asp T (2014) Vernalization mediated changes in the Lolium perenne transcriptome. PLoS ONE 9:e107365

    Article  PubMed  PubMed Central  Google Scholar 

  • Papaefthimiou D, Aliki K, Tsaftaris AS (2012) Cloning and characterization of SOC1 homologs in barley (Hordeum vulgare) and their expression during seed development and in response to vernalization. Physiol Plant 146:71

    Article  CAS  PubMed  Google Scholar 

  • Peng FY, Hu Z, Yang RC (2016) Bioinformatic prediction of transcription factor binding sites at promoter regions of genes for photoperiod and vernalization responses in model and temperate cereal plants. BMC Genomics 17:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen K, Nielsen KK (2005) Lolium perenne MADS-box gene with homology to SVP is regulated by vernalization. Direct Submission to NCBI https://www.ncbi.nlm.nih.gov/nuccore/71025329. Accessed 1 February 2017

  • Petersen K, Didion T, Andersen CH, Nielsen KK (2004) MADS-box genes from perennial ryegrass differentially expressed during transition from vegetative to reproductive growth. Plant Physiol 161:439–447

    Article  CAS  Google Scholar 

  • Petersen K, Kolmos E, Folling M, Salchert K, Storgaard M, Jensen CS, Didion T, Nielsen KK (2006) Two MADS-box genes from perennial ryegrass are regulated by vernalization and involved in the floral transition. Physiol Plant 126:268–278

    Article  CAS  Google Scholar 

  • Pfeifer M, Martis M, Asp T, Mayer KFX, Lübberstedt T, Byrne S, Frei U, Studer B (2013) The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics. Plant Physiol 161:571–582

    Article  CAS  PubMed  Google Scholar 

  • Shinozuka H, Hisano H, Ponting RC, Cogan NOI, Jones ES, Forster JW, Yamada T (2005) Molecular cloning and genetic mapping of perennial ryegrass casein protein kinase 2 α-subunit genes. Theor Appl Genet 112:167–177

    Article  CAS  PubMed  Google Scholar 

  • Shinozuka H, Cogan NOI, Shinozuka M, Marshall A, Kay P, Lin YH, Spangenberg GC, Forster JW (2015) A simple method for semi-random DNA amplicon fragmentation using the methylation-dependent restriction enzyme MspJI. BMC Biotechnol 15:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Shitsukawa N, Ikari C, Mitsuya T, Sakiyama T, Ishikawa A, Takumi S, Murai K (2007) Wheat SOC1 functions independently of WAP1/VRN1, an integrator of vernalization and photoperiod flowering promotion pathways. Physiol Plant 130:627–636

    Article  CAS  Google Scholar 

  • Skøt L, Humphreys MO, Armstead I, Heywood S, Skøt KP, Sanderson R, Thomas ID, Chorlton KH, Hamilton NRS (2005) An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). Mol Breed 15:233–245

    Article  Google Scholar 

  • Skøt L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID (2007) Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177:535–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Skøt L, Sanderson R, Thomas A, Skøt K, Thorogood D, Latypova G, Asp T, Armstead I (2011) Allelic variation in the perennial ryegrass flowering locus T gene is associated with changes in flowering time across a range of populations. Plant Physiol 155:1013–1022

    Article  PubMed  Google Scholar 

  • Studer B, Jensen LB, Hentrup S, Brazauskas G, Kölliker R, Lübberstedt T (2008) Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117:781–791

    Article  PubMed  Google Scholar 

  • Studer B, Byrne S, Nielsen RO, Panitz F, Bendixen C, Islam MdS, Pfeifer M, Lübberstedt T, Asp T (2012) A transcriptome map of perennial ryegrass (Lolium perenne L.). BMC Genomics 13:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES, Sheldon C (2007) Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143:225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Baillie RC, Cogan NOI, McFarlane NM, Dupal MP, Smith KF, Forster JW (2011) Molecular genetic marker-based analysis of species-differentiated phenotypic characters in an interspecific ryegrass mapping population. Crop Pasture Sci 62:892–902

    Article  CAS  Google Scholar 

  • Wang H, Pan J, Li Y, Lou D, Hu Y, Yu D (2016) The DELLA-CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signalling to regulate flowering. Plant Physiol 172:479–488

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA (2013) Ambient temperature signalling in plants. Curr Opin Plant Biol 23:661–666

    Article  Google Scholar 

  • Williamson ML (2008) Differential responses of tillers to flower induction in perennial ryegrass (Lolium perenne L.): implications for pereniality. Dissertation. Massey University

  • Winichayakul S, Beswick N, Dean C, Macknight RC (2005) Components of the Arabidopsis autonomous floral promotion pathway, FCA and FY, are conserved in monocots. Funct Plant Biol 32:345–355

    Article  CAS  Google Scholar 

  • Yamada T, Jones ES, Cogan NOI, Vechies AC, Nomura T, Hisano H, Shimamoto Y, Smith KF, Hayward MD, Forster JW (2004) QTL analysis of morphological, developmental, and winter hardiness-associated traits in perennial ryegrass. Crop Sci 44:925–935

    Article  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, Sanmiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. PNAS 103:19581–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH (2005) CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 139:770–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, Hao Yh, Feng YQ, Wang S, Schmid M, Wang JW (2012) Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors. Plant Cell 24:3320–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Luo Y, Zhang Z, Xu M, Wang W, Zhao Y, Zhang L, Fan Y, Wang L (2014) ZmSOC1, an MADS-box transcription factor from Zea mays, promotes flowering in Arabidopsis. Int J Mol Sci 15:19987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Victorian Department of Economic Development, Jobs, Transport and Resources, Dairy Futures Cooperative Research Centre, and DairyBio Initiative. The authors would like to thank Dr. Hiroshi Shinozuka and Professor German Spangenberg for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Forster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Forster, J.W. Flowering time regulation in perennial ryegrass. Euphytica 213, 106 (2017). https://doi.org/10.1007/s10681-017-1896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1896-2

Keywords

Navigation