Skip to main content
Log in

Genetic mapping and development of near-isogenic lines for genes governing a liguleless phenotype in tetraploid wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The liguleless phenotype in wheat lacks ligules and auricles on all plant leaves. Two duplicate dominant genes (Lg 1 and Lg 3 ) principally control the presence of ligules in tetraploid wheat. Although the Lg 3 gene was tentatively located in chromosome 2A, a genetic stock of Triticum durum Desf. (2n = 4x = 28, BBAA genome) having genotype lg 1 lg 1 Lg 3 Lg 3 has not been available. We speculated that a wild emmer (T. dicoccoides Körn., 2n = 4x = 28, BBAA genome) could be a possible source of the Lg 3 gene. In the present study near-isogenic lines (NIL’s) ANW 12E for genotype lg 1 lg 1 Lg 3 Lg 3 and ANW 12F for genotype Lg 1 Lg 1 lg 3 lg 3 were developed from a cross between ANW 12A (lg 1 lg 1 lg 3 lg 3 ), a liguleless NIL of T. durum LD222, and LDN(DIC 2A) (Lg 1 Lg 1 Lg 3 Lg 3 ) through backcrossing to ANW 12A. LDN(DIC 2A) is a chromosome substitution line in which a pair of T. durum cv. Langdon (LDN) 2A chromosomes is replaced with a pair of chromosomes 2A from T. dicoccoides (DIC) line Israel A. Molecular mapping using the F2 of liguleless durum PI 370751/ANW 12F revealed that the Lg 1 gene was 17.5 cM distal to Xgwm47 in chromosome 2BL. In the F2 of PI 370751/ANW 12E the Lg 3 gene was located 18.6 cM distal to Xgwm312 in chromosome 2AL. These results confirmed that the Lg 3 locus was present in chromosome 2A, and dominant alleles at the homoeologous Lg loci determine the presence of ligules in polyploid wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn SN, Tanksley SD (1993) Comparative linkage map of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Article  CAS  PubMed  Google Scholar 

  • Amagai Y, Watanabe N, Kuboyama T (2015) Genetic mapping and development of near-isogenic lines with genes conferring mutant phenotypes in Aegilops tauschii and synthetic hexaploid wheat. Euphytica. doi:10.1007/s10681-015-1424-1

  • Ausemus ER, Harrington JB, Reitz LP, Worzella WW (1946) A summary of genetic studies in hexaploid and tetraploid wheats. J Am Soc Agron 38:1082–1099

    Google Scholar 

  • Bagnara D, Rossi L (1972) A liguleless mutation radioinduced in Triticum durum Desf. Wheat Inf Serv 33:1–3

    Google Scholar 

  • Bagnara D, Rossi L, Ligato L (1972) Induced liguleless mutation in durum wheat. Genet Agr 26:278–290

    Google Scholar 

  • Becraft RW, Freeling M (1991) Sectors of liguleless-1 tissue interrupt an inductive signal during maize leaf development. Plant Cell 3:801–807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Causse M, Fulton TM, Cho YG, Ahn SN, Chunwongs J, Wu K, Xiao J, Yu D, Ronald PC, Harrington SB, Second GA, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Hay A, Hake S (2004) The dominant mutant Wavy auricle in blade1 disrupts patterning in a lateral domain of the maize leaf. Plant Physiol 135:300–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joppa LR, Cantrell RG (1990) Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30:1059–1064

    Article  CAS  Google Scholar 

  • Korzun V, Malyshev S, Voylokov A, Börner A (1997) RFLP-based mapping of three mutant loci in rye (Secale cereale L.) and their relation to homoeologous loci within Gramineae. Theor Appl Genet 95:468–473

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lee J, Park JJ, Kim SL, Yim J, An G (2007) Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Mol Biol 65:487–499

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Baker EP (1968) A linkage map for chromosome 2D. In: Findlay KW, Shepherd KW (eds) Proceedings of the 3rd international wheat genet symposium Australian Academy of Science. Canberra, Australia, pp 305–309

    Google Scholar 

  • Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M (1997) Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev 11:616–628

    Article  CAS  PubMed  Google Scholar 

  • Multani DS, Sharma SK, Dhaliwal HS, Gill KS (1992) Inheritance of induced morphological mutants in Triticutn monococcum L. Plant Breed 109:259–262

    Article  Google Scholar 

  • Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    CAS  PubMed  Google Scholar 

  • Pratchett N, Laurie DA (1994) Genetic map location of barley developmental mutant liguleless in relation to RFLP markers. Hereditas 120:35–39

    Article  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy PH, Ganal M (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Rossini L, Vecchietti A, Nicoloso L, Stein N, Franzago S, Salamini F, Pozzi C (2006) Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor Appl Genet 112:1073–1085

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fikus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Theodoris G, Inada N, Freeling M (2003) Conservation and molecular dissection of ROUGH SHEATH2 and ASYMMETRIC LEAVES1 function in leaf development. Proc Natl Acad Sci USA 100:6837–6842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based population of common wheat. Theor Appl Genet 112:1042–1051

    Article  CAS  PubMed  Google Scholar 

  • Walsh J, Waters CA, Freeling M (1998) The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade–sheath boundary. Genes Dev 12:208–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe N, Nakayama A, Ban T (2004) Cytological and microsatellite mapping of the gene for liguleless phenotype in durum wheat. Euphytica 140:163–170

    Article  CAS  Google Scholar 

  • Zwick MS, Nurul Islam-Faridi MN, Czeschin DG Jr, Wing RA, Hart GE, Stelly DM, Price HJ (1998) Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics 148:1983–1992

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge gifts of seed from the National Small Grain Collection (NGSC), Aberdeen, Idaho and USDA-ARS, Fargo, North Dakota, USA. We thank Dr. D. L. Klindworth, USDA-ARS, Northern Crop Science Laboratory, Fargo for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Watanabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amagai, Y., Watanabe, N. & Kuboyama, T. Genetic mapping and development of near-isogenic lines for genes governing a liguleless phenotype in tetraploid wheat. Euphytica 205, 851–857 (2015). https://doi.org/10.1007/s10681-015-1421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1421-4

Keywords

Navigation