Skip to main content
Log in

Genetic dissection of intersubgenomic heterosis in Brassica napus carrying genomic components of B. rapa

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Although strong intersubgenomic heterosis for seed production has been observed between “natural” domesticated Brassica napus (rapeseed, AACC) and a new type of rapeseed into which subgenomic components of Brassica rapa (AA) have been introgressed, the molecular genetic mechanism of this intersubgenomic heterosis is not understood. In this study, a recombinant inbred line population of new type rapeseed derived from a cross between B. napus and B. rapa, together with a population from a backcross with the parental line of B. napus, was used to identify single-locus quantitative trait locus (QTL) and interacting QTL pairs for yield and nine yield-related traits. More than half of single-locus QTLs and interacting QTL pairs detected were involved with the novel alleles induced by the introgression of B. rapa. The alleles directly from B. rapa A genome played a secondary role in contributing to intersubgenomic heterosis. Allelic and nonallelic interactions of both novel alleles generated by B. rapa introgression and the alleles directly from B. rapa A genome contributed to the intersubgenomic heterosis between “natural” domesticated rapeseed and new type rapeseed into which B. rapa had been introgressed. Six loci for fixed heterosis were identified and their possible applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel S, Möllers C, Becker HC (2005) Development of synthetic Brassica napus lines for the analysis of “fixed heterosis” in allopolyploid plants. Euphytica 146:157–163

    Article  CAS  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20(14):2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theory Appl Genet 120(2):271–281

    Article  CAS  Google Scholar 

  • Bento M, Gustafson P, Viegas W, Silva M (2010) Genome merger: from sequence rearrangements in triticale to their elimination in wheat-rye addition lines. Theory Appl Genet 121(3):489–497

    Article  CAS  Google Scholar 

  • Brunner S, Pea G, Rafalski A (2005) Origins, genetic organization and transcription of a family of non-autonomous helitron elements in maize. Plant J 43(6):799–810

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15(2):57–71

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Li M, Shi J, Fu D, Qian W, Zou J, Zhang C, Meng J (2008) Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theory Appl Genet 117(7):1031–1040

    Article  CAS  Google Scholar 

  • Dodds KS (1955) Hybrid vigour in plant breeding. Proc R Soc Lond B Biol Sci 144(915):185–192

    Article  PubMed  CAS  Google Scholar 

  • Duvick DN (1997) Heterosis: feeding people and protecting natural resources. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. Madison, Wisconsin, pp 19–29

    Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116(1):113–125

    PubMed  CAS  Google Scholar 

  • Falke KC, Susic Z, Hackauf B, Korzun V, Schondelmaier J, Wilde P, Wehling P, Wortmann H, Mank R, Rouppe van der Voort J, Maurer HP, Miedaner T, Geiger HH (2008) Establishment of introgression libraries in hybrid rye (Secale cereale L.) from an Iranian primitive accession as a new tool for rye breeding and genomics. Theory Appl Genet 117(4):641–652

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24(1):24–32

    Article  PubMed  CAS  Google Scholar 

  • Fu YB, Peterson GW, Yu JK, Gao L, Jia J, Richards KW (2006) Impact of plant breeding on genetic diversity of the Canadian hard red spring wheat germplasm as revealed by EST-derived SSR markers. Theory Appl Genet 112(7):1239–1247

    Article  CAS  Google Scholar 

  • Gaeta RT, Chris Pires J (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186(1):18–28

    Article  PubMed  CAS  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19(11):3403–3417

    Article  PubMed  CAS  Google Scholar 

  • Han FP, Fedak G, Guo WL, Liu B (2005) Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGcIR-1a) in newly synthesized wheat allopolyploids. Genetics 170(3):1239–1245

    Article  PubMed  CAS  Google Scholar 

  • Institute S (1996) SAS users guide: statistic. SAS Institute, Cary

    Google Scholar 

  • Khasdan V, Yaakov B, Kraitshtein Z, Kashkush K (2010) Developmental timing of DNA elimination following allopolyploidization in wheat. Genetics 185(1):387–390

    Article  PubMed  CAS  Google Scholar 

  • Kovach MJ, McCouch SR (2008) Leveraging natural diversity: back through the bottleneck. Curr Opin Plant Biol 11(2):193–200

    Article  PubMed  CAS  Google Scholar 

  • Leflon M, Eber F, Letanneur JC, Chelysheva L, Coriton O, Huteau V, Ryder CD, Barker G, Jenczewski E, Chevre AM (2006) Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theory Appl Genet 113(8):1467–1480

    Article  CAS  Google Scholar 

  • Li MT, Chen X, Meng JL (2006) Potential of intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome Ar from B. rapa and Cc from B. carinata. Crop Science 46(1):234–242

  • Li L, Lu K, Chen Z, Mu T, Hu Z, Li X (2008) Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180(3):1725–1742

    Article  PubMed  Google Scholar 

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23(2):60–66

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Wendel JF (2000) Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome 43(5):874–880

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Qian W, Meng J (2002) Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus × B. campestris). Theory Appl Genet 105(6–7):1050–1057

    Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with arabidopsis. Genetics 177(4):2433–2444

    PubMed  CAS  Google Scholar 

  • Michalak P (2009) Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity 102(1):45–50

    Article  PubMed  CAS  Google Scholar 

  • Nicolas SD, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, Ryder CD, Chevre AM, Jenczewski E (2007) Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics 175(2):487–503

    Article  PubMed  CAS  Google Scholar 

  • Osborn TC, Butrulle DV, Sharpe AG, Pickering KJ, Parkin IA, Parker JS, Lydiate DJ (2003) Detection and effects of a homeologous reciprocal transposition in Brassica napus. Genetics 165(3):1569–1577

    PubMed  CAS  Google Scholar 

  • Qian W, Liu R, Meng J (2003) Genetic effects on biomass yield in interspecific hybrids between Brassica napus and B. rapa. Euphytica 134(1):9–15

  • Qian W, Chen X, Fu D, Zou J, Meng J (2005) Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theory Appl Genet 110(7):1187–1194

    Article  CAS  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179 (3):1547-1558

    Google Scholar 

  • Reif JC, Fischer S, Schrag TA, Lamkey KR, Klein D, Dhillon BS, Utz HF, Melchinger AE (2010) Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data. Theory Appl Genet 120(2):301–310

    Article  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13(8):1749–1759

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182(3):851–861

    Article  PubMed  CAS  Google Scholar 

  • Skalicka K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166(1):291–303

    Article  PubMed  CAS  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theory Appl Genet 75:784–794

    CAS  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92(17):7719–7723

    Article  PubMed  CAS  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B.napus and peculiar mode of fertilization. Japan J Bot 7:389–452

    Google Scholar 

  • van de Wouw M, van Hintum T, Kik C, van Treuren R, Visser B (2010) Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theory Appl Genet 120(6):1241–1252

    Article  Google Scholar 

  • Wang DL, Zhu J, Li ZR, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theory Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Wang SC, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC http://statgenncsuedu/qtlcart/WQTLCarthtm

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Natl Rev Genet 2(12):983–989

    Article  CAS  Google Scholar 

  • Zou J, Zhu J, Huang S, Tian E, Xiao Y, Fu D, Tu J, Fu T, Meng J (2010) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theory Appl Genet 120(2):283–290

    Article  Google Scholar 

  • Zou J, Fu DH, Gong HH, Qia W, Xia W, Pires JC, Feng J, Long Y, Yang TJ, Limd YP, Parke BS, Meng JL (2011) De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a RIL population of Brassica napus derived from interspecific hybridization with B. rapa. Plant J (in press)

Download references

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (project code: 30830073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinling Meng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The detected results of three-locus interacting QTL chain in the TH-BC population and TH-MPH data set Supplementary Fig. 1(a) represents the three-locus interacting QTL chain detected in the TH-BC population and Supplementary Fig. 1(b) denotes the three-locus interacting QTL chain detected in the TH-MPH data set. In each three-locus interacting QTL chain, the characters in the cycles represent the QTL loci and the connected line means the present interacting relationship between the QTLs of two ends of the connected line. Each QTL is denoted by year, followed by trait, linkage group and the index of linked marker, respectively. For example, 05-FT-IP-5-2 means one QTL which was detected in the environment of 2005 year, controlled the flowering time and was closely linked with the No.2 marker in No 5 linkage group. The detected traits included flowering time (FT, days), plant height (PH, cm), branch number per plant (BN), seed number per pod (SN), pod number per plant (PN), 1000-seed weight (SW, g), seed yield (SY, g/plant), economic coefficient (EC), oil yield (OY, g/plant), and dry weight (DW, g/plant). (DOC 58 kb)

Supplementary Fig. 2

Interacting QTL pairs between the A1 and A4 linkage groups detected in the TH-RIL population The QTLs flanked by N-CRB03 in linkage group A4 interacted with the QTLs flanked by N-CRB01 in linkage group A1 to control the pod number per plant, and also interacted with the QTLs flanked by N-CRB02 in linkage group A4 to control dry weight. (DOC 73 kb)

Supplementary Table 1

List of QTLs detected in the TH-BC population and TH-MPH data set (DOC 291 kb)

Supplementary Table 2

List of interacting QTL pairs in the TH-BC population and TH-MPH data set (DOC 1376 kb)

Supplementary Table 3

List of interacting QTL pairs in the TH-RIL population (DOC 752 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, D., Qian, W., Zou, J. et al. Genetic dissection of intersubgenomic heterosis in Brassica napus carrying genomic components of B. rapa . Euphytica 184, 151–164 (2012). https://doi.org/10.1007/s10681-011-0533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0533-8

Keywords

Navigation